Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L506-L518, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652496

RESUMO

Infants born very prematurely (<28 wk gestation) have immature lungs and often require supplemental oxygen. However, long-term hyperoxia exposure can arrest lung development, leading to bronchopulmonary dysplasia (BPD), which increases acute and long-term respiratory morbidity and mortality. The neural mechanisms controlling breathing are highly plastic during development. Whether the ventilatory control system adapts to pulmonary disease associated with hyperoxia exposure in infancy remains unclear. Here, we assessed potential age-dependent adaptations in the control of breathing in an established rat model of BPD associated with hyperoxia. Hyperoxia exposure ( FIO2 ; 0.9 from 0 to 10 days of life) led to a BPD-like lung phenotype, including sustained reductions in alveolar surface area and counts, and modest increases in airway resistance. Hyperoxia exposure also led to chronic increases in room air and acute hypoxic minute ventilation (V̇e) and age-dependent changes in breath-to-breath variability. Hyperoxia-exposed rats had normal oxygen saturation ( SpO2 ) in room air but greater reductions in SpO2 during acute hypoxia (12% O2) that were likely due to lung injury. Moreover, acute ventilatory sensitivity was reduced at P12 to P14. Perinatal hyperoxia led to greater glial fibrillary acidic protein expression and an increase in neuron counts within six of eight or one of eight key brainstem regions, respectively, controlling breathing, suggesting astrocytic expansion. In conclusion, perinatal hyperoxia in rats induced a BPD-like phenotype and age-dependent adaptations in V̇e that may be mediated through changes to the neural architecture of the ventilatory control system. Our results suggest chronically altered ventilatory control in BPD.


Assuntos
Displasia Broncopulmonar/metabolismo , Hiperóxia/metabolismo , Hipóxia/metabolismo , Lesão Pulmonar/metabolismo , Fatores Etários , Animais , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Hiperóxia/patologia , Hipertensão Pulmonar/metabolismo , Hipóxia/patologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/patologia , Ratos
2.
Neurobiol Learn Mem ; 156: 17-23, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30336208

RESUMO

Coiled-coil forms of Homer1, including Homer1b and c (Homer1b/c) have been shown to play a role in hippocampal learning and memory and synaptic plasticity. We have previously found that overexpression of hippocampal Homer1c is sufficient to rescue learning and memory ability in aged learning impaired rats and in Homer1 knockout (KO) mice, and to rescue group I metabotropic glutamate receptor (mGluR1/5) mediated long-term potentiation in KO mice. Here, to determine if Homer1b/c is necessary for successful learning and memory we have utilized a rAAV5 vector expressing a Homer1b/c-targeting short hairpin RNA to knock down the expression of hippocampal Homer1b/c in adult 4-6-month old male Sprague Dawley rats. We have found that reduced hippocampal Homer1b/c expression elicits significant learning deficits in contextual fear conditioning, but not in the Morris water maze or novel object recognition tasks. Furthermore, we demonstrate that reduced hippocampal Homer1b/c is sufficient to completely block mGluR1/5 mediated long-term depression in the Schaffer collateral pathway. These results support a significant role for Homer1b/c in learning and synaptic plasticity; however, the exact role of each of these two protein isoforms in learning and memory remains elusive.


Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Reconhecimento Psicológico/fisiologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Proteínas de Arcabouço Homer/genética , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...