Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Dev ; 32(19-20): 606-621, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37551982

RESUMO

The mature brain contains an incredible number and diversity of cells that are produced and maintained by heterogeneous pools of neural stem cells (NSCs). Two distinct types of NSCs exist in the developing and adult mouse brain: Glial Fibrillary Acidic Protein (GFAP)-negative primitive (p)NSCs and downstream GFAP-positive definitive (d)NSCs. To better understand the embryonic functions of NSCs, we performed clonal lineage tracing within neurospheres grown from either pNSCs or dNSCs to enrich for their most immediate downstream neural progenitor cells (NPCs). These clonal progenitor lineage tracing data allowed us to construct a hierarchy of progenitor subtypes downstream of pNSCs and dNSCs that were then validated using single-cell transcriptomics. Further, we identify Nexn as required for neuronal specification from neuron/astrocyte progenitor cells downstream of rare pNSCs. Combined, these data provide single-cell resolution of NPC lineages downstream of rare pNSCs that likely would be missed from population-level analyses in vivo.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Astrócitos/metabolismo , Diferenciação Celular/genética
2.
Science ; 378(6615): 68-78, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201590

RESUMO

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 8 , Glioma , Isocitrato Desidrogenase , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 8/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 11(1): 4523, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633238

RESUMO

Mitochondrial health plays a crucial role in human brain development and diseases. However, the evaluation of mitochondrial health in the brain is not incorporated into clinical practice due to ethical and logistical concerns. As a result, the development of targeted mitochondrial therapeutics remains a significant challenge due to the lack of appropriate patient-derived brain tissues. To address these unmet needs, we developed cerebral organoids (COs) from induced pluripotent stem cells (iPSCs) derived from human peripheral blood mononuclear cells (PBMCs) and monitored mitochondrial health from the primary, reprogrammed and differentiated stages. Our results show preserved mitochondrial genetics, function and treatment responses across PBMCs to iPSCs to COs, and measurable neuronal activity in the COs. We expect our approach will serve as a model for more widespread evaluation of mitochondrial health relevant to a wide range of human diseases using readily accessible patient peripheral (PBMCs) and stem-cell derived brain tissue samples.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Neurogênese , Biomarcadores , Técnicas de Cultura de Células , Reprogramação Celular/genética , Fenômenos Eletrofisiológicos , Imunofluorescência , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Organoides , Sinapses/fisiologia , Transmissão Sináptica
4.
Life Sci Alliance ; 3(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32303588

RESUMO

Human cerebral organoid (hCO) models offer the opportunity to understand fundamental processes underlying human-specific cortical development and pathophysiology in an experimentally tractable system. Although diverse methods to generate brain organoids have been developed, a major challenge has been the production of organoids with reproducible cell type heterogeneity and macroscopic morphology. Here, we have directly addressed this problem by establishing a robust production pipeline to generate morphologically consistent hCOs and achieve a success rate of >80%. These hCOs include both a radial glial stem cell compartment and electrophysiologically competent mature neurons. Moreover, we show using immunofluorescence microscopy and single-cell profiling that individual organoids display reproducible cell type compositions that are conserved upon extended culture. We expect that application of this method will provide new insights into brain development and disease processes.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia
5.
Nature ; 569(7754): 121-125, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019301

RESUMO

The turnover of the intestinal epithelium is driven by multipotent LGR5+ crypt-base columnar cells (CBCs) located at the bottom of crypt zones1. However, CBCs are lost following injury, such as irradiation2, but the intestinal epithelium is nevertheless able to recover3. Thus, a second population of quiescent '+4' cells, or reserve stem cells (RSCs), has previously been proposed to regenerate the damaged intestine4-7. Although CBCs and RSCs were thought to be mutually exclusive4,8, subsequent studies have found that LGR5+ CBCs express RSC markers9 and that RSCs were dispensable-whereas LGR5+ cells were essential-for repair of the damaged intestine3. In addition, progenitors of absorptive enterocytes10, secretory cells11-15 and slow cycling LGR5+ cells16 have been shown to contribute to regeneration whereas the transcriptional regulator YAP1, which is important for intestinal regeneration, was suggested to induce a pro-survival phenotype in LGR5+ cells17. Thus, whether cellular plasticity or distinct cell populations are critical for intestinal regeneration remains unknown. Here we applied single-cell RNA sequencing to profile the regenerating mouse intestine and identified a distinct, damage-induced quiescent cell type that we term the revival stem cell (revSC). revSCs are marked by high clusterin expression and are extremely rare under homoeostatic conditions, yet give rise-in a temporal hierarchy-to all the major cell types of the intestine, including LGR5+ CBCs. After intestinal damage by irradiation, targeted ablation of LGR5+ CBCs, or treatment with dextran sodium sulfate, revSCs undergo a YAP1-dependent transient expansion, reconstitute the LGR5+ CBC compartment and are required to regenerate a functional intestine. These studies thus define a unique stem cell that is mobilized by damage to revive the homoeostatic stem cell compartment and regenerate the intestinal epithelium.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Regeneração/genética , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Animais , Feminino , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Regeneração/fisiologia , Análise de Sequência de RNA
6.
JAMA Neurol ; 72(5): 589-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822375

RESUMO

IMPORTANCE: Despite improvements in survival with aggressive chemoradiation, outcomes for patients diagnosed as having glioblastoma multiforme (GBM) remain poor. Survival is further limited in elderly patients, who are often unable to tolerate multimodality therapy. The appropriate treatment approach for elderly patients (aged >65 years) with GBM remains unclear. While the literature supports the use of standard radiotherapy (60 Gy), several recent studies have suggested that treatment with temozolomide monotherapy or short-course radiotherapy may be a reasonable alternative. OBJECTIVE: To review literature reporting survival data related to treatment of elderly patients with GBM using either temozolomide alone or radiotherapy alone. EVIDENCE REVIEW: We performed a systematic review to identify articles from the temozolomide era (2005-present) that reported survival data related to treatment of elderly patients with GBM using either temozolomide alone or radiotherapy alone, with consideration of O6-methylguanine-DNA-methyltransferase gene (MGMT) promoter methylation status. PubMed was searched for articles between January 1, 2005, and August 31, 2013, using the search terms glioblastoma, elderly, temozolomide, radiation, hypofractionated, and survival, and references from relevant articles were searched. Selected articles reported overall survival data associated with either temozolomide alone or radiotherapy alone in elderly patients (aged ≥60 years) with GBM; articles were excluded if they did not report survival data from radiotherapy alone or temozolomide alone, were not restricted to an elderly population, did not report original data, were not restricted to patients with primary GBM, were a subgroup analysis of a prior article, were a case report, or could not be located in entirety. Articles were interrogated as per the criteria designated by the Oxford Centre for Evidence-Based Medicine to determine the level of evidence presented, and data from level 1 and 2 studies were used for analysis. From a review of 185 articles, 23 were selected for inclusion and final analysis. From these, we identified 2 level 1 studies and 1 level 2 study that reported overall survival in elderly patients treated with temozolomide alone, and 4 level 1 studies and 2 level 2 studies that reported overall survival in elderly patients treated with radiotherapy alone. FINDINGS: This review of the literature revealed several limitations. First, there is a paucity of randomized clinical studies comparing temozolomide alone with radiotherapy alone in elderly patients with GBM. Second, there is a lack of coherence in the literature for the definition of elderly. Third, the treatment paradigms used are not consistent from study to study. Regardless, the available data did allow the formulation of a recommendation based on level 1 and 2 data. CONCLUSIONS AND RELEVANCE: The literature supports the use of hypofractionated radiotherapy or temozolomide monotherapy in the treatment of elderly patients with GBM. In patients with MGMT promoter methylation, temozolomide monotherapy may have greater benefit than radiotherapy.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/análogos & derivados , Fracionamento da Dose de Radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Dacarbazina/uso terapêutico , Glioblastoma/genética , Humanos , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...