Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(38): 21731-21740, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32985625

RESUMO

In the quest for the identification of the light emitter(s) responsible for the firefly bioluminescence, the study of oxyluciferin analogues with controlled chemical and electronic structures is of particular importance. In this article, we report the results of our experimental and computational investigation of the pH-dependent absorption spectra characterizing three analogues bound into the luciferase cavity, together with adenosine-monophosphate (AMP). While the analogue microscopic pKa values do not differ much from their reference values, it turns out that the AMP protonation state is analogue-dependent and never doubly-deprotonated. A careful analysis of the interactions evidences the main role of E344 glutamic acid, as well as the flexibility of the cavity which can accommodate any oxyluciferin analogue. The consideration of the absorption spectra suggests that the oxyluciferin enolate form has to be excluded from the list of the bioluminescence reaction products.


Assuntos
Indóis/química , Luciferases de Vaga-Lume/química , Pirazinas/química , Animais , Domínio Catalítico , Concentração de Íons de Hidrogênio , Luciferases de Vaga-Lume/metabolismo , Espectrometria de Fluorescência
2.
J Phys Chem Lett ; 11(9): 3653-3659, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32310668

RESUMO

One of the most characterized bioluminescent reactions involves the firefly luciferase that catalyzes the oxidation of the luciferin producing oxyluciferin in its first excited state. While relaxing to the ground state, oxyluciferin emits visible light with an emission maximum that can vary from green to red. Oxyluciferin exists under six different chemical forms resulting from a keto/enol tautomerization and the deprotonation of the phenol or enol moieties. The optical properties of each chemical form have been recently characterized by the investigations of a variety of oxyluciferin derivatives, indicating unresolved excited-state proton transfer (ESPT) reactions. In this work, femtosecond pump-probe spectroscopy and time-resolved fluorescence spectroscopy are used to investigate the picosecond kinetics of the ESPT reactions and demonstrate the excited state keto to enol conversion of oxyluciferin and its derivatives in aqueous buffer as a function of pH. A comprehensive photophysical scheme is provided describing the complex luminescence pathways of oxyluciferin in protic solution.

3.
Phys Chem Chem Phys ; 22(14): 7381-7391, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211689

RESUMO

The thienoguanine nucleobase (thGb) is an isomorphic fluorescent analogue of guanine. In aqueous buffer at neutral pH, thGb exists as a mixture of two ground-state H1 and H3 keto-amino tautomers with distinct absorption and emission spectra and high quantum yield. In this work, we performed the first systematic photophysical characterization of thGb as a function of pH (2 to 12). Steady-state and time-resolved fluorescence spectroscopies, supplemented with theoretical calculations, enabled us to identify three additional thGb forms, resulting from pH-dependent ground-state and excited-state reactions. Moreover, a thorough analysis allowed us to retrieve their individual absorption and emission spectra as well as the equilibrium constants which govern their interconversion. From these data, the complete photoluminescence pathway of thGb in aqueous solution and its dependence as a function of pH was deduced. As the identified forms differ by their spectra and fluorescence lifetime, thGb could be used as a probe for sensing local pH changes under acidic conditions.


Assuntos
Corantes Fluorescentes/química , Guanina/análogos & derivados , Guanina/química , Concentração de Íons de Hidrogênio , Luminescência , Espectrometria de Fluorescência , Água/química
4.
J Chem Theory Comput ; 14(4): 2117-2126, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29509419

RESUMO

Firefly bioluminescence is a quite efficient process largely used for numerous applications. However, some fundamental photochemical properties of the light emitter are still to be analyzed. Indeed, the light emitter, oxyluciferin, can be in six different forms due to interexchange reactions. In this work, we present the simulation of the absorption and emission spectra of the possible natural oxyluciferin forms in water and some of their analogues considering both the solvent/oxyluciferin interactions and the dynamical effects by using MD simulations and QM/MM methods. On the one hand, the absorption band shapes have been rationalized by analyzing the electronic nature of the transitions involved. On the other hand, the simulated and experimental emission spectra have been compared. In this case, an ultrafast excited state proton transfer (ESPT) occurs in oxyluciferin and its analogues, which impairs the detection of the emission from the protonated state by steady-state fluorescence spectroscopy. Transient absorption spectroscopy was used to evidence this ultrafast ESPT and rationalize the comparison between simulated and experimental steady-state emission spectra. Finally, this work shows the suitability of the studied oxyluciferin analogues to mimic the corresponding natural forms in water solution, as an elegant way to block the desired interexchange reactions allowing the study of each oxyluciferin form separately.


Assuntos
Vaga-Lumes/química , Indóis/química , Simulação de Dinâmica Molecular , Pirazinas/química , Animais , Ligação de Hidrogênio , Estrutura Molecular , Espectrometria de Fluorescência , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...