Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 9(3): 605-9, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8728505

RESUMO

Evidence is presented for the photochemical formation of singlet molecular oxygen (1O2) in air-saturated aqueous solutions of several sunscreen active ingredients using sunlight-range illumination. This is of significance because (1) 1O2 is known to be cytotoxic, and (2) there have been several reports of toxic effects associated with the use of some sunscreens; most notably, with p-aminobenzoic acid (PABA). Illuminated aqueous solutions of PABA, 2-ethylhexyl p-(dimethylamino)benzate (ODPABA), 2-hydroxy-4-methoxybenzophenone (BZ3), 2,2'-dihydroxy-4-methoxybenzophenone (BZ8), 2-ethylhexyl 2-cyano-3,3-diphenylacrylate (OCR), 2-ethylhexyl p-methoxycinnamate (OMC), and 2-ethylhexyl salicylate (OCS) were evaluated individually for 1O2 formation. Furfuryl alcohol (FFA), a well-known chemical trap for 1O2, was added to each of the aqueous sunscreen solutions. The FFA was consumed when solutions of PABA, ODPABA, OMC, and OCR were illuminated, but no loss of FFA other than by direct photolysis occurred in solutions of BZ3, BZ8, or OCS. There was also no significant loss of FFA in any of these solutions kept in the dark. Further evidence for the formation of 1O2 in illuminated aqueous sunscreen solutions is provided by the results of experiments in which individual solutions containing sunscreen active ingredients and FFA that were diluted with D2O exhibited an increased rate of FFA consumption while the addition of azide ion (N3-) reduced the rate of FFA consumption. Continuous sunlight-range illumination of aqueous PABA solutions produced significantly higher steady-state concentrations of 1O2 than in solutions containing any of the other sunscreen active ingredients evaluated. The substituted benzophenone compounds (BZ3 and BZ8) and the salicylate-based compound (OCS) not only appear to produce no 1O2, but they also appear to produce no other reactive oxidant species that are capable of consuming FFA. This indicates that BZ3, BZ8, and OCS may be peferable, from the standpoint of toxic oxidant formation, for use as sunscreen active ingredients when compared to the other compounds evaluated in this study.


Assuntos
Oxigênio/química , Fotoquímica , Protetores Solares/química , Ácido 4-Aminobenzoico/química , Poluentes Ocupacionais do Ar/análise , Furanos/química , Cinética , Luz , Oxigênio/análise , Oxigênio Singlete , Soluções
2.
J Photochem Photobiol B ; 32(1-2): 33-7, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8725051

RESUMO

Evidence is presented for the photochemical formation of singlet molecular oxygen (1O2) in air-saturated buffered aqueous solutions of p-aminobenzoic acid (PABA) using sunlight-range illumination. This is significant because PABA is widely used as an active ingredient in sunscreen preparations that are applied to the surface of the skin and 1O2 is known to cause oxidative damage to cells via the formation and subsequent reactions of lipid peroxides. Furfuryl alcohol (FFA), a well known chemical trap for 1O2, was added to aqueous PABA solutions prior to illumination. The FFA was consumed when the solution was illuminated, but no loss of FFA occurred in the dark and loss by direct photolysis was negligibly slow. Further evidence for the formation of 1O2 in illuminated aqueous PABA solutions is provided by the results of experiments in which individual solutions containing PABA and FFA that were diluted with D2O exhibited an increased rate of FFA consumption due to the increased lifetime and concentration of 1O2 in this solvent.


Assuntos
Ácido 4-Aminobenzoico/efeitos da radiação , Luz , Oxigênio , Ácido 4-Aminobenzoico/química , Ácido 4-Aminobenzoico/farmacologia , Furanos , Humanos , Cinética , Peroxidação de Lipídeos , Matemática , Modelos Teóricos , Fotoquímica , Rosa Bengala/química , Oxigênio Singlete , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Solventes , Espectrofotometria , Protetores Solares/química , Protetores Solares/farmacologia , Protetores Solares/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...