Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 6(1): 40-51, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654754

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease with no permanent cure affecting around 1% of the population over 65. There is an urgency to search for a disease-modifying agent with fewer untoward effects. PD pathology involves the accumulation of toxic alpha-synuclein (α-syn) and neuronal inflammation leading to the degeneration of dopaminergic (DAergic) neurons. Swertiamarin (SWE), a well-studied natural product, possesses a strong anti-inflammatory effect. It is a secoiridoid glycoside isolated from Enicostemma littorale Blume. SWE showed a reversal effect on the α-syn accumulation in the 6-hydroxydopamine (6-OHDA)-induced Caenorhabditis elegans model of PD. However, there are no reports in the literature citing the effect of SWE as a neuroprotective agent in rodents. The present study aimed to evaluate the anti-inflammatory activity of SWE against lipopolysaccharide (LPS)-induced C6 glial cell activation and its neuroprotective effect in the intrastriatal rotenone mouse PD model. SWE treatment showed a significant reduction in interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) levels in LPS-induced C6 glial cell activation. Further, our studies demonstrated the suppression of microglial and astroglial activation in substantia nigra (SN) after administration of SWE (100 mg/kg, intraperitoneally) in a rotenone mouse model. Moreover, SWE alleviated the rotenone-induced α-syn overexpression in the striatum and SN. SWE ameliorated the motor impairment against rotenone-induced neurotoxicity and mitigated the loss of DAergic neurons in the nigrostriatal pathway. Therefore, SWE has the potential to develop as an adjunct therapy for PD, but it warrants further mechanistic studies.

2.
Nat Prod Res ; 37(10): 1651-1655, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35924731

RESUMO

Natural products have contributed immensely towards the treatment of various diseases including diabetes. Here, a database of small molecules from nature possessing antidiabetic properties was analysed and shortlisted according to their structural diversity. Later, those structures were screened by in-silico docking studies to understand their affinity towards glucagon-like peptide-1 (GLP-1) receptor. The selected molecules were isolated and investigated further by integrated in-vitro and in-silico approaches. Alpha-mangostin was found to be suitable due to its excellent docking score and isolation yield. A pancreatic beta cell line was used to test the activity of alpha-mangostin and observed a 3-fold increase in insulin secretion compared to 15 mM glucose control. Further, in-silico molecular dynamics simulations studies have validated its target by showing conformational changes at the functionally active part of the GLP-1 receptor. This screening strategy can be applied to identify pertinent natural products rapidly for various therapeutic targets.


Assuntos
Diabetes Mellitus , Glucagon , Humanos , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insulina/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Biologia Computacional
3.
J Pharm Biomed Anal ; 197: 113933, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588298

RESUMO

The US FDA and EMA approved Ribociclib (RIBO) to treat metastatic breast cancers in 2017. Formation of impurities during storage of any drug can significantly contribute to its overall toxicity and therapeutic efficacy, which ultimately leads to a safety concern. Over the period, it has been observed that impurities sometimes cause serious unwanted toxicity, which can even lead to withdrawal of a drug from market. Therefore, complete characterization of potential impurities is extremely important to identify molecular hot spots regarding structural changes. To the best of our knowledge, till date, the potential degraded impurities of RIBO are unknown. No study reported in literature on the structural characterization of the degradation impurities of RIBO. In this study, an ICH recommended comprehensive stress study under hydrolytic, oxidative, photolytic and thermolytic conditions was performed on RIBO. The degradation products were characterized by tandem mass spectrometry utilising time of flight mass analyzer majorly after electrospray ionisation. The atmospheric pressure chemical ionisation mode was employed in characterization of the N-oxide degradation products where Meisenheimer rearrangement occurred. A degradation product was synthesized in house and fully characterized with the help of NMR (1H NMR, 13C NMR, DEPT, 2D NMR and D2O exchange experiments). The source of formylation for the generation of degradation products was investigated employing different solvent systems. The degradation pathways were delineated by explaining the putative mechanism of degradation in various conditions. The in silico toxicity of the degradation impurities was evaluated with the help of ProTox-II toxicity prediction platform.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Aminopiridinas , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Purinas
4.
J Pharm Biomed Anal ; 186: 113279, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361471

RESUMO

Adequate retention of arterolane (ART) has not been published in the literature till date; the hydrophilic interaction liquid chromatographic (HILIC) method with improved retention and separation of arterolane from its degradation products are reporting here for the first time. The present study discusses the comparative retention of the drug-using Reverse Phase C18 and HILIC columns, indicating the effective method (Syncronis HILIC-150 x 4.6 mm, 5µ). It was observed that the buffer concentration (ammonium acetate) in the mobile phase plays a crucial role in the retention of ART. Forced degradation studies of ART were conducted as per ICH Q1 (R2) prescribed conditions. The drug is not stable in hydrolytic (acid, base and neutral), oxidative and photolytic conditions and observed four unique degradation products (DPs). The optimized method for the analysis of degraded samples comprises of Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) technique having Agilent HILIC plus (100 × 4.6 mm, 3.5µ) column and acetonitrile (ACN) and 10 mM ammonium acetate 75:25 (% v/v) mobile phase with 0.4 mL/minute flow. Initially, the structure of all four DPs was proposed on the basis of accurate mass and their fragmentation pattern. The major degradation product (DP4) was isolated, and its structure was confirmed by HRMS and 1H NMR, 13C NMR, HMBC, DEPT 135 and Deuteriated NMR spectroscopy. The formation of DPs might be due to the breakdown of (1 r,3r,5 r,7r)-2-methoxyadamantan-2-ol from ART (DP4), and subsequent diol formation at 1,2,4-trioxolane moiety (DP3).


Assuntos
Compostos Heterocíclicos com 1 Anel/análise , Peróxidos/análise , Compostos de Espiro/análise , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Compostos Heterocíclicos com 1 Anel/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Peróxidos/química , Compostos de Espiro/química
5.
Int J Pept Res Ther ; 26(2): 955-968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435169

RESUMO

ABSTRACT: Recent advances in analytical techniques have opened new opportunities for plant-based drug discovery in the field of peptide and proteins. Enzymatic hydrolysis of plant parent proteins forms bioactive peptides which are explored in the treatment of various diseases. In this review, we will discuss the identified plant-based bioactive proteins and peptides and the in vitro, in vivo results for the treatment of diabetes. Extraction, isolation, characterization and commercial utilization of plant proteins is a challenge for the pharmaceutical industry as plants contain several interfering secondary metabolites. The market of peptide drugs for the treatment of diabetes is growing at a fast rate. Plant-based bioactive peptides might open up new opportunities to discover economic lead for the management of various diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...