Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139018

RESUMO

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.


Assuntos
Acidose Láctica , Síndrome MELAS , Células-Tronco Mesenquimais , Doenças Mitocondriais , Humanos , Síndrome MELAS/genética , Síndrome MELAS/terapia , Mitocôndrias/genética , Acidose Láctica/metabolismo , Acidose Láctica/patologia , DNA Mitocondrial/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios/patologia , Células-Tronco Mesenquimais/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373439

RESUMO

Mitochondria are essential organelles for maintaining intracellular homeostasis. Their dysfunction can directly or indirectly affect cell functioning and is linked to multiple diseases. Donation of exogenous mitochondria is potentially a viable therapeutic strategy. For this, selecting appropriate donors of exogenous mitochondria is critical. We previously demonstrated that ultra-purified bone marrow-derived mesenchymal stem cells (RECs) have better stem cell properties and homogeneity than conventionally cultured bone marrow-derived mesenchymal stem cells. Here, we explored the effect of contact and noncontact systems on three possible mitochondrial transfer mechanisms involving tunneling nanotubes, connexin 43 (Cx43)-mediated gap junction channels (GJCs), and extracellular vesicles (Evs). We show that Evs and Cx43-GJCs provide the main mechanism for mitochondrial transfer from RECs. Through these two critical mitochondrial transfer pathways, RECs could transfer a greater number of mitochondria into mitochondria-deficient (ρ0) cells and could significantly restore mitochondrial functional parameters. Furthermore, we analyzed the effect of exosomes (EXO) on the rate of mitochondrial transfer from RECs and recovery of mitochondrial function. REC-derived EXO appeared to promote mitochondrial transfer and slightly improve the recovery of mtDNA content and oxidative phosphorylation in ρ0 cells. Thus, ultrapure, homogenous, and safe stem cell RECs could provide a potential therapeutic tool for diseases associated with mitochondrial dysfunction.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Conexina 43/genética , Conexina 43/metabolismo , Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Junções Comunicantes/metabolismo
3.
Stem Cell Res Ther ; 14(1): 40, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927781

RESUMO

BACKGROUND: Mitochondrial dysfunction caused by mutations in mitochondrial DNA (mtDNA) or nuclear DNA, which codes for mitochondrial components, are known to be associated with various genetic and congenital disorders. These mitochondrial disorders not only impair energy production but also affect mitochondrial functions and have no effective treatment. Mesenchymal stem cells (MSCs) are known to migrate to damaged sites and carry out mitochondrial transfer. MSCs grown using conventional culture methods exhibit heterogeneous cellular characteristics. In contrast, highly purified MSCs, namely the rapidly expanding clones (RECs) isolated by single-cell sorting, display uniform MSCs functionality. Therefore, we examined the differences between RECs and MSCs to assess the efficacy of mitochondrial transfer. METHODS: We established mitochondria-deficient cell lines (ρ0 A549 and ρ0 HeLa cell lines) using ethidium bromide. Mitochondrial transfer from RECs/MSCs to ρ0 cells was confirmed by PCR and flow cytometry analysis. We examined several mitochondrial functions including ATP, reactive oxygen species, mitochondrial membrane potential, and oxygen consumption rate (OCR). The route of mitochondrial transfer was identified using inhibition assays for microtubules/tunneling nanotubes, gap junctions, or microvesicles using transwell assay and molecular inhibitors. RESULTS: Co-culture of ρ0 cells with MSCs or RECs led to restoration of the mtDNA content. RECs transferred more mitochondria to ρ0 cells compared to that by MSCs. The recovery of mitochondrial function, including ATP, OCR, mitochondrial membrane potential, and mitochondrial swelling in ρ0 cells co-cultured with RECs was superior than that in cells co-cultured with MSCs. Inhibition assays for each pathway revealed that RECs were sensitive to endocytosis inhibitor, dynasore. CONCLUSIONS: RECs might serve as a potential therapeutic strategy for diseases linked to mitochondrial dysfunction by donating healthy mitochondria.


Assuntos
DNA Mitocondrial , Mitocôndrias , Humanos , Células HeLa , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Células Clonais , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA