Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(6-1): 062702, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466002

RESUMO

Stochastic resonance is a noise phenomenon that benefits applications such as pattern formation, neural systems, microelectromechanical systems, and image processing. This study experimentally clarifies that the orientation of the liquid crystal molecules was switched between two stable positions when stochastic resonance was induced by colored noises in a liquid crystal light valve with optical feedback. Ornstein-Uhlenbeck and dichotomous noises were used for colored noise, and the noise was applied to the drive voltage of the liquid crystal light valve. The signal-to-noise ratio was measured with respect to changes in the noise type, noise intensity, and autocorrelation time of the noise. It was found that typical stochastic resonance was observed with a noise autocorrelation time of approximately 20 ms or more for both noise types, and dichotomous noise further enhanced the stochastic resonance compared to the Ornstein-Uhlenbeck noise. This suggests that it is possible to maximize stochastic resonance in a liquid crystal light valve by optimizing the conditions of colored noise.

2.
Phys Rev E ; 99(1-1): 012701, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780349

RESUMO

We report on the discovery of enormous negative viscosity in a nematic liquid crystal in the presence of turbulence induced by electric fields. As the negative viscosity in this system is so large, we are able to observe several phenomena originating from it. For example, we observe a spontaneous shear flow that rotates the upper disk of a rheometer, as well as the reversal of the rotational direction upon applying an external torque in the opposite direction. Hysteresis loops are also observed in the shear-stress-shear-rate curves, which is reminiscent of those seen for ferromagnetic and ferroelectric materials. The similarities between the phenomena observed for our system and ferroic materials are comprehensively demonstrated, although the two systems are fundamentally different in that the former is out of equilibrium. We elucidate the origin of the negative viscosity and propose a simple model that reproduces the phenomena observed in this active fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...