Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome Res Rep ; 2(3): 20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046823

RESUMO

Aim: Bifidobacterium longum subsp. infantis uses a glycoside hydrolase (GH) family 42 ß-galactosidase (BiBga42A) for hydrolyzing lacto-N-tetraose (LNT), which is the most abundant core structure of human milk oligosaccharides (HMOs). As such, BiBga42A represents one of the pivotal enzymes underpinning the symbiosis between bifidobacteria and breastfed infants. Despite its importance, the structural basis underlying LNT hydrolysis by BiBga42A is not understood. Moreover, no substrate-complexed structures are available to date for GH42 family members. Methods: X-ray crystallography was used to determine the structures of BiBga42A in the apo- and liganded forms. The roles of the amino acid residues that were presumed to be involved in catalysis and substrate recognition were examined by a mutational study, in which kinetic parameters of each mutant were determined using 4-nitrophenyl-ß-D-galactoside, lacto-N-biose I, LNT, and lacto-N-neotetraose (LNnT) as substrates. Conservation of those amino acid residues was examined among structure-determined GH42 ß-galactosidases. Results: Crystal structures of the wild-type enzyme complexed with glycerol, the E160A/E318A double mutant complexed with galactose (Gal), and the E318S mutant complexed with LNT were determined at 1.7, 1.9, and 2.2 Å resolutions, respectively. The LNT molecule (excluding the Gal moiety at subsite +2) bound to the E318S mutant is recognized by an extensive hydrogen bond network and several hydrophobic interactions. The non-reducing end Gal moiety of LNT adopts a slightly distorted conformation and does not overlap well with the Gal molecule bound to the E160A/E318A mutant. Twelve of the sixteen amino acid residues responsible for LNT recognition and catalysis in BiBga42A are conserved among all homologs including ß-1,6-1,3-galactosidase (BlGal42A) from Bifidobacterium animalis subsp. lactis. Conclusion: BlGal42A is active on 3-ß-galactobiose similarly to BiBga42A but is inactive on LNT. Interestingly, we found that the entrance of the catalytic pocket of BlGal42A is narrower than that of BiBga42A and seems not easily accessible from the solvent side due to the presence of two bulky amino acid side chains. The specificity difference may reflect the structural difference between the two enzymes.

2.
Elife ; 122023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150375

RESUMO

Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources of Drosophila larvae, and investigated their functions. Hanseniaspora uvarum is the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses, Acetobacter orientalis emerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host-bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the key microbial species that support animal growth under microbial transition.


Assuntos
Drosophila , Leveduras , Animais , Larva , Filogenia , Leveduras/metabolismo , Bactérias/genética , Fermentação
3.
Front Microbiol ; 14: 1155438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125172

RESUMO

Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo.

4.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864192

RESUMO

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Assuntos
Ecossistema , Mucinas , Mucinas/metabolismo , Polissacarídeos/metabolismo , Bactérias/metabolismo
5.
Gut Microbes ; 14(1): 2128605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217238

RESUMO

Colonic luminal aromatic amines have been historically considered to be derived from dietary source, especially fermented foods; however, recent studies indicate that the gut microbiota serves as an alternative source of these amines. Herein, we show that five prominent genera of Firmicutes (Blautia, Clostridium, Enterococcus, Ruminococcus, and Tyzzerella) have the ability to abundantly produce aromatic amines through the action of aromatic amino acid decarboxylase (AADC). In vitro cultivation of human fecal samples revealed that a significant positive correlation between aadc copy number of Ruminococcus gnavus and phenylethylamine (PEA) production. Furthermore, using genetically engineered Enterococcus faecalis-colonized BALB/cCrSlc mouse model, we showed that the gut bacterial aadc stimulates the production of colonic serotonin, which is reportedly involved in osteoporosis and irritable bowel syndrome. Finally, we showed that human AADC inhibitors carbidopa and benserazide inhibit PEA production in En. faecalis.


Assuntos
Carbidopa , Microbioma Gastrointestinal , Animais , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Benserazida/farmacologia , Humanos , Camundongos , Fenetilaminas , Serotonina/metabolismo
6.
Cell Rep ; 40(11): 111332, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103838

RESUMO

Clostridioides difficile causes nosocomial antibiotic-associated diarrhea on a global scale. Susceptibility to C. difficile infection (CDI) is influenced by the composition and metabolism of gut microbiota, which in turn are affected by diet. However, the mechanism underlying the interplay between diet and gut microbiota that modulates susceptibility to CDI remains unclear. Here, we show that a soy protein diet increases the mortality of antibiotic-treated, C. difficile-infected mice while also enhancing the intestinal levels of amino acids (aas) and relative abundance of Lactobacillus genus. Indeed, Ligilactobacillus murinus-mediated fermentation of soy protein results in the generation of aas, thereby promoting C. difficile growth, and the process involves the anchored cell wall proteinase PrtP. Thus, mutual interaction between dietary protein and the gut microbiota is a critical factor affecting host susceptibility to CDI, suggesting that dietary protein sources can be an important determinant in controlling the disease.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Antibacterianos , Proteínas Alimentares , Camundongos , Proteínas de Soja
7.
ISME J ; 16(9): 2265-2279, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768643

RESUMO

Bifidobacteria are among the first colonizers of the infant gut, and human milk oligosaccharides (HMOs) in breastmilk are instrumental for the formation of a bifidobacteria-rich microbiota. However, little is known about the assembly of bifidobacterial communities. Here, by applying assembly theory to a community of four representative infant-gut associated Bifidobacterium species that employ varied strategies for HMO consumption, we show that arrival order and sugar consumption phenotypes significantly affected community formation. Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, two avid HMO consumers, dominate through inhibitory priority effects. On the other hand, Bifidobacterium breve, a species with limited HMO-utilization ability, can benefit from facilitative priority effects and dominates by utilizing fucose, an HMO degradant not utilized by the other bifidobacterial species. Analysis of publicly available breastfed infant faecal metagenome data showed that the observed trends for B. breve were consistent with our in vitro data, suggesting that priority effects may have contributed to its dominance. Our study highlights the importance and history dependency of initial community assembly and its implications for the maturation trajectory of the infant gut microbiota.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Bifidobacterium/genética , Fezes/microbiologia , Humanos , Lactente , Leite Humano/química , Oligossacarídeos
8.
Microbiome Res Rep ; 1(3): 20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38046362

RESUMO

Aim: 16S rRNA gene-based microbiota analyses (16S metagenomes) using next-generation sequencing (NGS) technologies are widely used to examine the microbial community composition in environmental samples. However, the sequencing capacity of NGS is sometimes insufficient to cover the whole microbial community, especially when analyzing soil and fecal microbiotas. This limitation may have hampered the detection of minority species that potentially affect microbiota formation and structure. Methods: We developed a simple method, termed 16S metagenome-DRIP (Deeper Resolution using an Inhibitory Primer), that not only enhances minority species detection but also increases the accuracy of their abundance estimation. The method relies on the inhibition of normal amplicon formation of the 16S rRNA gene of a target major (abundant) species during the first PCR step. The addition of a biotinylated primer that is complementary to the variable sequence of the V3-V4 region of the target species inhibits a normal amplification process to form an aberrant short amplicon. The fragment is then captured by streptavidin beads for removal from the reaction mixture, and the resulting mixture is utilized for the second PCR with barcode-tag primers. Thus, this method only requires two additional experimental procedures to the conventional 16S metagenome analysis. A proof-of-concept experiment was first conducted using a mock sample consisting of the genomes of 14 bacterial species. Then, the method was applied to infant fecal samples using a Bifidobacterium-specific inhibitory primer (n = 11). Results: As a result, the reads assigned to the family Bifidobacteriaceae decreased on average from 16,657 to 1718 per sample without affecting the total read counts (36,073 and 34,778 per sample for the conventional and DRIP methods, respectively). Furthermore, the minority species detection rate increased with neither affecting Bray-Curtis dissimilarity calculated by omitting the target Bifidobacterium species (median: 0.049) nor changing the relative abundances of the non-target species. While 115 amplicon sequence variants (ASVs) were unique to the conventional method, 208 ASVs were uniquely detected for the DRIP method. Moreover, the abundance estimation for minority species became more accurate, as revealed thorough comparison with the results of quantitative PCR analysis. Conclusion: The 16S metagenome-DRIP method serves as a useful technique to grasp a deeper and more accurate microbiota composition when combined with conventional 16S metagenome analysis methods.

9.
Appl Environ Microbiol ; 88(2): e0143721, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731055

RESUMO

Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose [FL]), are associated with the formation of a Bifidobacterium-rich gut microbial community. Phylogenetic analysis revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subsp. kashiwanohense and Bifidobacterium pseudocatenulatum, both of which possess FL-binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO consumption analyses showed that the FL transporter type from B. catenulatum subsp. kashiwanohense JCM 15439T conferred a novel HMO uptake pattern that includes complex fucosylated HMOs (lacto-N-fucopentaose II and lacto-N-difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that the H-antigen- or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria in HMO-rich environments. IMPORTANCE The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breast milk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated host-microbe symbiosis. While the coevolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allow bifidobacteria to consume different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.


Assuntos
Bifidobacterium , Leite Humano , Bifidobacterium/metabolismo , Humanos , Lactente , Metagenoma , Metagenômica , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Filogenia
10.
Gut Microbes ; 13(1): 1973835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34553672

RESUMO

Certain existing prebiotics meant to facilitate the growth of beneficial bacteria in the intestine also promote the growth of other prominent bacteria. Therefore, the growth-promoting effects of ß-galactosides on intestinal bacteria were analyzed. Galactosyl-ß1,4-l-rhamnose (Gal-ß1,4-Rha) selectively promoted the growth of Bifidobacterium. Bifidobacterium longum subsp. longum 105-A (JCM 31944) has multiple solute-binding proteins belonging to ATP-binding cassette transporters for sugars. Each strain in the library of 11 B. longum subsp. longum mutants, in which each gene of the solute-binding protein was disrupted, was cultured in a medium containing Gal-ß1,4-Rha as the sole carbon source, and only the BL105A_0502 gene-disruption mutant showed delayed and reduced growth compared to the wild-type strain. BL105A_0502 homolog is highly conserved in bifidobacteria. In a Gal-ß1,4-Rha-containing medium, Bifidobacterium longum subsp. infantis JCM 1222T, which possesses BLIJ_2090, a homologous protein to BL105A_0502, suppressed the growth of enteric pathogen Clostridioides difficile, whereas the BLIJ_2090 gene-disrupted mutant did not. In vivo, administration of B. infantis and Gal-ß1,4-Rha alleviated C. difficile infection-related weight loss in mice. We have successfully screened Gal-ß1,4-Rha as a next-generation prebiotic candidate that specifically promotes the growth of beneficial bacteria without promoting the growth of prominent bacteria and pathogens.


Assuntos
Bifidobacterium longum subspecies infantis/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Clostridioides difficile/crescimento & desenvolvimento , Dissacarídeos/farmacologia , Prebióticos/análise , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Front Microbiol ; 11: 1349, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625197

RESUMO

The gut microbiome is a dynamic community that significantly affects host health; it is frequently disturbed by medications such as antibiotics. Recently, probiotics have been proposed as a remedy for antibiotic-induced dysbiosis, but the efficacy of such treatments remains uncertain. Thus, the effect of specific antibiotic-probiotic combinations on the gut microbiome and host health warrants further research. We tested the effect vancomycin, amoxicillin, and ciprofloxacin on mice. Antibiotic administration was followed by one of the following recovery treatments: Bifidobacterium bifidum JCM 1254 as a probiotic (PR); fecal transplant (FT); or natural recovery (NR). Each antibiotic administration and recovery treatment was repeated three times over 9 weeks. We used the Shannon Index and Chao1 Index to determine gut microbiome diversity and assessed recovery by quantifying the magnitude of microbial shift using the Bray-Curtis Index of Dissimilarity. We determined the community composition by sequencing the V3-V4 regions of the 16S ribosomal RNA gene. To assess host health, we measured body weight and cecum weight, as well as mRNA expression of inflammation-related genes by reverse-transcription quantitative PCR. Our results show that community response varied by the type of antibiotic used, with vancomycin having the most significant effects. As a result, the effect of probiotics and fecal transplants also varied by antibiotic type. For vancomycin, the first antibiotic disturbance substantially increased the relative abundance of inflammatory species in the phylum Proteobacteria, such as Proteus, but the effect of subsequent disturbances was less pronounced, suggesting that the gut microbiome is affected by past disturbance events. Furthermore, although gut microbiome diversity did not recover, probiotic supplementation was effective in limiting cecum size enlargement and colonic inflammation caused by vancomycin. However, for amoxicillin and ciprofloxacin, the relative abundances of proinflammatory species were not greatly affected, and consequently, the effect of probiotic supplementation on community structure, cecum weight, and expression of inflammation-related genes was comparatively negligible. These results indicate that probiotic supplementation is effective, but only when antibiotics cause proinflammatory species-induced gut inflammation, suggesting that the necessity of probiotic supplementation is strongly influenced by the type of disturbance introduced to the community.

12.
Nat Commun ; 11(1): 3285, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620774

RESUMO

The early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here, we describe catabolic pathways that support the growth of Roseburia and Eubacterium members on distinct human milk oligosaccharides (HMOs). The HMO pathways, which include enzymes with a previously unknown structural fold and specificity, were upregulated together with additional glycan-utilization loci during growth on selected HMOs and in co-cultures with Akkermansia muciniphila on mucin, suggesting an additional role in enabling cross-feeding and access to mucin O-glycans. Analyses of 4599 Roseburia genomes underscored the preponderance and diversity of the HMO utilization loci within the genus. The catabolism of HMOs by butyrate-producing Clostridiales may contribute to the competitiveness of this group during the weaning-triggered maturation of the microbiota.


Assuntos
Butiratos/metabolismo , Clostridiales/metabolismo , Leite Humano/metabolismo , Mucinas/metabolismo , Oligossacarídeos/metabolismo , Akkermansia , Bifidobacterium/metabolismo , Clostridiales/genética , Colo/microbiologia , Eubacterium/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Recém-Nascido , Metabolismo/fisiologia , Leite Humano/química , Polissacarídeos/metabolismo , Verrucomicrobia/metabolismo , Desmame
13.
Microorganisms ; 8(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231096

RESUMO

Certain species of the genus Bifidobacterium represent human symbionts. Many studies have shown that the establishment of symbiosis with such bifidobacterial species confers various beneficial effects on human health. Among the more than ten (sub)species of human gut-associated Bifidobacterium that have significantly varied genetic characteristics at the species level, Bifidobacterium bifidum is unique in that it is found in the intestines of a wide age group, ranging from infants to adults. This species is likely to have adapted to efficiently degrade host-derived carbohydrate chains, such as human milk oligosaccharides (HMOs) and mucin O-glycans, which enabled the longitudinal colonization of intestines. The ability of this species to assimilate various host glycans can be attributed to the possession of an adequate set of extracellular glycoside hydrolases (GHs). Importantly, the polypeptides of those glycosidases frequently contain carbohydrate-binding modules (CBMs) with deduced affinities to the target glycans, which is also a distinct characteristic of this species among members of human gut-associated bifidobacteria. This review firstly describes the prevalence and distribution of B. bifidum in the human gut and then explains the enzymatic machinery that B. bifidum has developed for host glycan degradation by referring to the functions of GHs and CBMs. Finally, we show the data of co-culture experiments using host-derived glycans as carbon sources, which underpin the interesting altruistic behavior of this species as a cross-feeder.

14.
Sci Adv ; 5(8): eaaw7696, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489370

RESUMO

The human gut microbiota established during infancy has persistent effects on health. In vitro studies have suggested that human milk oligosaccharides (HMOs) in breast milk promote the formation of a bifidobacteria-rich microbiota in infant guts; however, the underlying molecular mechanism remains elusive. Here, we characterized two functionally distinct but overlapping fucosyllactose transporters (FL transporter-1 and -2) from Bifidobacterium longum subspecies infantis. Fecal DNA and HMO consumption analyses, combined with deposited metagenome data mining, revealed that FL transporter-2 is primarily associated with the bifidobacteria-rich microbiota formation in breast-fed infant guts. Structural analyses of the solute-binding protein (SBP) of FL transporter-2 complexed with 2'-fucosyllactose and 3-fucosyllactose, together with phylogenetic analysis of SBP homologs of both FL transporters, highlight a unique adaptation strategy of Bifidobacterium to HMOs, in which the gain-of-function mutations enable FL transporter-2 to efficiently capture major fucosylated HMOs. Our results provide a molecular insight into HMO-mediated symbiosis and coevolution between bifidobacteria and humans.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal/fisiologia , Oligossacarídeos/metabolismo , Simbiose/fisiologia , Trissacarídeos/metabolismo , Adulto , Idoso , Bifidobacterium/metabolismo , Evolução Biológica , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metagenoma/fisiologia , Pessoa de Meia-Idade , Leite Humano/metabolismo , Adulto Jovem
15.
Microb Biotechnol ; 12(2): 259-264, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637938

RESUMO

The human body houses a variety of microbial ecosystems, such as the microbiotas on the skin, in the oral cavity and in the digestive tract. The gut microbiota is one such ecosystem that contains trillions of bacteria, and it is well established that it can significantly influence host health and diseases. With the advancement in bioinformatics tools, numerous comparative studies based on 16S ribosomal RNA (rRNA) gene sequences, metabolomics, pathological and epidemical analyses have revealed the correlative relationship between the abundance of certain taxa and disease states or amount of certain causative bioactive compounds. However, the 16S rRNA-based taxonomic analyses using next-generation sequencing (NGS) technology essentially detect only the majority species. Although the entire gut microbiome consists of 1013 microbial cells, NGS read counts are given in multiples of 106 , making it difficult to determine the diversity of the entire microbiota. Some recent studies have reported instances where certain minority species play a critical role in creating locally stable conditions for other species by stabilizing the fundamental microbiota, despite their low abundance. These minority species act as 'keystone species', which is a species whose effect on the community is disproportionately large compared to its relative abundance. One of the attributes of keystone species within the gut microbiota is its extensive enzymatic capacity for substrates that are rare or difficult to degrade for other species, such as dietary fibres or host-derived complex glycans, like human milk oligosaccharides (HMOs). In this paper, we propose that more emphasis should be placed on minority taxa and their possible role as keystone species in gut microbiota studies by referring to our recent studies on HMO-mediated microbiota formation in the infant gut.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Aleitamento Materno , Microbioma Gastrointestinal , Glucosídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Interações Microbianas , Microbiota , Bifidobacterium/enzimologia , Humanos , Lactente
16.
Nutrients ; 12(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888048

RESUMO

The infant's gut microbiome is generally rich in the Bifidobacterium genus. The mother's milk contains natural prebiotics, called human milk oligosaccharides (HMOs), as the third most abundant solid component after lactose and lipids, and of the different gut microbes, infant gut-associated bifidobacteria are the most efficient in assimilating HMOs. Indeed, the fecal concentration of HMOs was found to be negatively correlated with the fecal abundance of Bifidobacterium in infants. Given these results, two HMO molecules, 2'-fucosyllactose and lacto-N-neotetraose, have recently been industrialized to fortify formula milk. As of now, however, our knowledge about the HMO consumption pathways in infant gut-associated bifidobacteria is still incomplete. The recent studies indicate that HMO assimilation abilities significantly vary among different Bifidobacterium species and strains. Therefore, to truly maximize the effects of prebiotic and probiotic supplementation in commercialized formula, we need to understand HMO consumption behaviors of bifidobacteria in more detail. In this review, we summarized how different Bifidobacterium species/strains are equipped with varied gene sets required for HMO assimilation. We then examined the correlation between the abundance of the HMO-related genes and bifidobacteria-rich microbiota formation in the infant gut through data mining analysis of a deposited fecal microbiome shotgun sequencing dataset. Finally, we shortly described future perspectives on HMO-related studies.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Leite Humano , Oligossacarídeos/metabolismo , Bifidobacterium/enzimologia , Bifidobacterium/genética , Bifidobacterium/metabolismo , Aleitamento Materno , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Humanos , Lactente , Metagenômica , Leite Humano/química , Leite Humano/metabolismo
17.
Sci Rep ; 8(1): 13958, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228375

RESUMO

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bifidobacteriales/metabolismo , Bifidobacterium/metabolismo , Fezes/microbiologia , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Adulto , Proteínas de Bactérias/genética , Infecções por Bifidobacteriales/microbiologia , Bifidobacterium/classificação , Bifidobacterium/genética , Células Cultivadas , Pré-Escolar , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal , Genoma Bacteriano , Humanos , Lactente , Masculino
18.
Int J Biochem Cell Biol ; 93: 52-61, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29102547

RESUMO

Recent studies have reported that polyamines in the colonic lumen might affect animal health and these polyamines are thought to be produced by gut bacteria. In the present study, we measured the concentrations of three polyamines (putrescine, spermidine, and spermine) in cells and culture supernatants of 32 dominant human gut bacterial species in their growing and stationary phases. Combining polyamine concentration analysis in culture supernatant and cells with available genomic information showed that novel polyamine biosynthetic proteins and transporters were present in dominant human gut bacteria. Based on these findings, we suggested strategies for optimizing polyamine concentrations in the human colonic lumen via regulation of genes responsible for polyamine biosynthesis and transport in the dominant human gut bacteria.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Poliaminas Biogênicas/metabolismo , Proteínas de Transporte/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal/fisiologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Colo/metabolismo , Humanos
19.
Biosci Biotechnol Biochem ; 81(10): 2018-2027, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28814130

RESUMO

Human gut symbiont bifidobacteria possess carbohydrate-degrading enzymes that act on the O-linked glycans of intestinal mucins to utilize those carbohydrates as carbon sources. However, our knowledge about mucin type O-glycan degradation by bifidobacteria remains fragmentary, especially regarding how they decompose sulfated glycans, which are abundantly found in mucin sugar-chains. Here, we examined the abilities of several Bifidobacterium strains to degrade a sulfated glycan substrate and identified a 6-sulfo-ß-d-N-acetylglucosaminidase, also termed sulfoglycosidase, encoded by bbhII from Bifidobacterium bifidum JCM 7004. A recombinant BbhII protein showed a substrate preference toward 6-sulfated and 3,4-disulfated N-acetylglucosamines over non-sulfated and 3-sulfated N-acetylglucosamines. The purified BbhII directly released 6-sulfated N-acetylglucosamine from porcine gastric mucin and the expression of bbhII was moderately induced in the presence of mucin. This de-capping activity may promote utilization of sulfated glycans of mucin by other bacteria including bifidobacteria, thereby establishing the symbiotic relationship between human and gut microbes.


Assuntos
Acetilglucosaminidase/metabolismo , Bifidobacterium bifidum/enzimologia , Mucinas/metabolismo , Polissacarídeos/metabolismo , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/metabolismo , Regulação Bacteriana da Expressão Gênica
20.
Biosci Biotechnol Biochem ; 81(10): 2009-2017, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28782454

RESUMO

Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Microbioma Gastrointestinal , Anaerobiose , Bactérias/genética , Simulação por Computador , Técnicas de Cultura , DNA Bacteriano/genética , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...