Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 68(10): 2070-5, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15502351

RESUMO

In order to develop synthetic methods for biologically active homoallylic terpene sulfates, we examined the applicability and substrate specificities of several prenyl chain elongating enzymes with respect to 4-methyl-4-pentenyl diphosphate (homoIPP). The reaction of dimethylallyl diphosphate with homoIPP by use of Bacillus stearothermophilus (all-trans)-farnesyl diphosphate synthase resulted in efficient yields of cis-(yield: 45.9%) and trans-4,8-dimethylnona-3,7-dien-1-ol (homoGOH, 25.5%), which has a carbon skeleton of 4,8-dimethylnona-3-en-1-sulfate, an antiproliferative compound from a marine organism (Aiello, A. et al., Tetrahedron, 53, 11489-11492 (1997)). The homoIPP was found to be also active as a homoallylic substrate in place of isopentenyl diphosphate for Sulfolobus acidocaldarius geranylgeranyl diphosphate synthase to give diphosphate of cis- and trans-4,8,12-trimethyltrideca-3,7,11-trien-1-ol, for Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase to give cis- and trans-4,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-ol (homoGGOH), and for Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase to give cis-homoGGOH exclusively.


Assuntos
Alquil e Aril Transferases/metabolismo , Bactérias Gram-Positivas/enzimologia , Hemiterpenos/química , Organofosfatos/química , Sulfolobus acidocaldarius/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...