Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5041, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598217

RESUMO

Molecular ferroelectric materials consist of organic and inorganic ions held together by hydrogen bonds, electrostatic forces, and van der Waals interactions. However, ionically tailored multifunctionality in molecular ferroelectrics has been a missing component despite of their peculiar stimuli-responsive structure and building blocks. Here we report molecular ionic ferroelectrics exhibiting the coexistence of room-temperature ionic conductivity (6.1 × 10-5 S/cm) and ferroelectricity, which triggers the ionic-coupled ferroelectric properties. Such ionic ferroelectrics with the absorbed water molecules further present the controlled tunability in polarization from 0.68 to 1.39 µC/cm2, thermal conductivity by 13% and electrical resistivity by 86% due to the proton transfer in an ionic lattice under external stimuli. These findings enlighten the development of molecular ionic ferroelectrics towards multifunctionality.

2.
Nat Commun ; 13(1): 6959, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379949

RESUMO

Chemical energy ferroelectrics are generally solid macromolecules showing spontaneous polarization and chemical bonding energy. These materials still suffer drawbacks, including the limited control of energy release rate, and thermal decomposition energy well below total chemical energy. To overcome these drawbacks, we report the integrated molecular ferroelectric and energetic material from machine learning-directed additive manufacturing coupled with the ice-templating assembly. The resultant aligned porous architecture shows a low density of 0.35 g cm-3, polarization-controlled energy release, and an anisotropic thermal conductivity ratio of 15. Thermal analysis suggests that the chlorine radicals react with macromolecules enabling a large exothermic enthalpy of reaction (6180 kJ kg-1). In addition, the estimated detonation velocity of molecular ferroelectrics can be tuned from 6.69 ± 0.21 to 7.79 ± 0.25 km s-1 by switching the polarization state. These results provide a pathway toward spatially programmed energetic ferroelectrics for controlled energy release rates.

3.
Nat Commun ; 12(1): 5696, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588459

RESUMO

Chemically driven thermal wave triggers high energy release rate in covalently-bonded molecular energetic materials. Molecular ferroelectrics bridge thermal wave and electrical energy by pyroelectric associated with heating frequency, thermal mass and heat transfer. Herein we design energetic molecular ferroelectrics consisting of imidazolium cations (energetic ion) and perchlorate anions (oxidizer), and describe its thermal wave energy conversion with a specific power of 1.8 kW kg-1. Such a molecular ferroelectric crystal shows an estimated detonation velocity of 7.20 ± 0.27 km s-1 comparable to trinitrotoluene and hexanitrostilbene. A polarization-dependent heat transfer and specific power suggests the role of electron-phonon interaction in tuning energy density of energetic molecular ferroelectrics. These findings represent a class of molecular ferroelectric energetic compounds for emerging energy applications demanding high power density.

4.
ACS Nano ; 12(11): 11366-11375, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30335365

RESUMO

Optical ignition of solid energetic materials, which can rapidly release heat, gas, and thrust, is still challenging due to the limited light absorption and high ignition energy of typical energetic materials ( e.g., aluminum, Al). Here, we demonstrated that the optical ignition and combustion properties of micron-sized Al particles were greatly enhanced by adding only 20 wt % of graphene oxide (GO). These enhancements are attributed to the optically activated disproportionation and oxidation reactions of GO, which release heat to initiate the oxidization of Al by air and generate gaseous products to reduce the agglomeration of the composites and promote the pressure rise during combustion. More importantly, compared to conventional additives such as metal oxides nanoparticles ( e.g., WO3 and Bi2O3), GO has much lower density and therefore could improve energetic properties without sacrificing Al content. The results from Xe flash ignition and laser-based excitation experiments demonstrate that GO is an efficient additive to improve the energetic performance of micron-sized Al particles, enabling micron-sized Al to be ignited by optical activation and promoting the combustion of Al in air.

5.
Sci Rep ; 8(1): 8036, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795273

RESUMO

A new synthesis approach for aluminum particles enables an aluminum core to be passivated by an oxidizing salt: aluminum iodate hexahydrate (AIH). Transmission electron microscopy (TEM) images show that AIH replaces the Al2O3 passivation layer on Al particles that limits Al oxidation. The new core-shell particle reactivity was characterized using laser-induced air shock from energetic materials (LASEM) and results for two different Al-AIH core-shell samples that vary in the AIH concentration demonstrate their potential use for explosive enhancement on both fast (detonation velocity) and slow (blast effects) timescales. Estimates of the detonation velocity for TNT-AIH composites suggest an enhancement of up to 30% may be achievable over pure TNT detonation velocities. Replacement of Al2O3 with AIH allows Al to react on similar timescales as detonation waves. The AIH mixtures tested here have relatively low concentrations of AIH (15 wt. % and 6 wt. %) compared to previously reported samples (57.8 wt. %) and still increase TNT performance by up to 30%. Further optimization of AIH synthesis could result in additional increases in explosive performance.

6.
Appl Opt ; 56(3): B47-B57, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157864

RESUMO

A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10 µs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

7.
Appl Opt ; 56(3): B134-B141, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157876

RESUMO

The impact of laser-driven flyer plates on energetic materials CL-20, PETN, and TATB has been investigated. Flyer plates composed of 25 µm thick Al were impacted into the energetic materials at velocities up to 1.3 km/s. The flyer plates were accelerated by means of an Nd:YAG laser pulse. The laser pulse generates rapidly expanding plasma between the flyer plate foil and the substrate to which it is adhered. As the plasma grows, a section of the metal foil is ejected at high speed, forming the flyer plate. The velocity of the flyer plate was determined using VISAR, time of flight, and high-speed video. The response of the energetic material to impact was determined by light emission recorded by an infrared-sensitive photodiode. Following post-impact analysis of the impacted energetic material, it was hypothesized that the light emitted by the material after impact is not due to the impact of the flyer itself but rather is caused by the decomposition of energetic material ejected (via the shock of flyer plate impact) into a cloud of hot products generated during the launch of the flyer plate. This hypothesis was confirmed through schlieren imaging of a flyer plate launch, clearly showing the ejection of hot gases and particles from the region surrounding the flyer plate launch and the burning of the ejected energetic material particles.

8.
Angew Chem Int Ed Engl ; 55(52): 16132-16135, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27885780

RESUMO

Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (Tdec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (Vdet (theor)=9304 m s-1 versus Vdet (exp)=9910 m s-1 ) in the range of that of CL-20. Also, the thermal stability (Tdec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP).

9.
Phys Chem Chem Phys ; 16(39): 21452-66, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25182866

RESUMO

Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

10.
J Phys Chem A ; 117(39): 9555-63, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23862752

RESUMO

A series of organic polymers and the military explosive cyclotrimethylenetrinitramine (RDX) were studied using the light emission from a femtosecond laser-induced plasma under an argon atmosphere. The relationship between the molecular structure and plasma emission was established by using the percentages of the atomic species (C, H, N, O) and bond types (C-C, C═C, C-N, and C≡N) in combination with the atomic/molecular emission intensities and decay rates. In contrast to previous studies of organic explosives in which C2 was primarily formed by recombination, for the organic materials in this study the percentage of C-C (and C═C) bonds was strongly correlated to the molecular C2 emission. Time-resolved emission spectra were collected to determine the lifetimes of the atomic and molecular species in the plasma. Observed differences in decay rates were attributed to the differences in both the molecular structure of the organic polymers or RDX and the chemical reactions that occur within the plasma. These differences could potentially be exploited to improve the discrimination of explosive residues on organic substrates with laser-induced breakdown spectroscopy.


Assuntos
Substâncias Explosivas/química , Polímeros/química , Triazinas/química , Argônio , Carbono/química , Compostos Inorgânicos de Carbono/química , Hidrogênio/química , Lasers , Luz , Estrutura Molecular , Nitrogênio/química , Fenômenos de Química Orgânica , Oxigênio/química , Fótons , Polietilenotereftalatos/química , Análise Espectral , Raios Ultravioleta
11.
Appl Opt ; 52(4): B10-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385936

RESUMO

Laser-induced breakdown spectroscopy is a promising approach for explosive residue detection, but several limitations to its widespread use remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually entrained in the laser-induced plasma and the laser-material interaction can be significantly affected by the substrate type. Here, we have demonstrated that despite the strong spectral variation in cyclotrimethylenetrinitramine (RDX) residues applied to various metal substrates, classification of the RDX residue independent of substrate type is feasible. Several approaches to improving the chemometric models based on partial least squares discriminant analysis (PLS-DA) have been described: classifying the RDX residue spectra together in one class independent of substrate, using selected emission intensities and ratios to increase the true positive rate (TPR) and decrease the false positive rate (FPR), and fusing the results from two PLS-DA models generated using the full broadband spectra and selected intensities and ratios. The combination of these approaches resulted in a TPR of 97.5% and a FPR of 1.0% for RDX classification on metal substrates.

12.
Appl Opt ; 51(7): B13-21, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22410910

RESUMO

The feasibility of exploiting plasma chemistry to study the chemical reactions between metallic nanoparticles and molecular explosives such as cyclotrimethylenetrinitramine (RDX) has been demonstrated. This method, based on laser-induced breakdown spectroscopy, involves the production of nanoparticles in a laser-induced plasma and the simultaneous observation of time-resolved atomic and molecular emission characteristic of the species involved in the intermediate chemical reactions of the nanoenergetic material in the plasma. Using this method, it has been confirmed that the presence of aluminum promotes the ejection process of carbon from the intermediate products of RDX. The time evolution of species formation, the effects of laser pulse energy, and the effects of trace metal content on the chemical reactions were also studied.

13.
Appl Opt ; 51(7): B83-92, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22410930

RESUMO

Standoff laser induced breakdown spectroscopy (LIBS) has previously been used to classify trace residues as either hazardous (explosives, biological, etc.) or benign. Correct classification can become more difficult depending on the surface/substrate underneath the residue due to variations in the laser-material interaction. In addition, classification can become problematic if the substrate material has a similar elemental composition to the residue. We have evaluated coupling multivariate analysis with standoff LIBS to determine the effectiveness of classifying thin explosive residue layers on painted surfaces. Good classification results were obtained despite the fact that the painted surface contributes to the LIBS emission signal.

14.
Anal Bioanal Chem ; 400(10): 3289-301, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21331489

RESUMO

The potential of laser-induced breakdown spectroscopy (LIBS) to discriminate biological and chemical threat simulant residues prepared on multiple substrates and in the presence of interferents has been explored. The simulant samples tested include Bacillus atrophaeus spores, Escherichia coli, MS-2 bacteriophage, α-hemolysin from Staphylococcus aureus, 2-chloroethyl ethyl sulfide, and dimethyl methylphosphonate. The residue samples were prepared on polycarbonate, stainless steel and aluminum foil substrates by Battelle Eastern Science and Technology Center. LIBS spectra were collected by Battelle on a portable LIBS instrument developed by A3 Technologies. This paper presents the chemometric analysis of the LIBS spectra using partial least-squares discriminant analysis (PLS-DA). The performance of PLS-DA models developed based on the full LIBS spectra, and selected emission intensities and ratios have been compared. The full-spectra models generally provided better classification results based on the inclusion of substrate emission features; however, the intensity/ratio models were able to correctly identify more types of simulant residues in the presence of interferents. The fusion of the two types of PLS-DA models resulted in a significant improvement in classification performance for models built using multiple substrates. In addition to identifying the major components of residue mixtures, minor components such as growth media and solvents can be identified with an appropriately designed PLS-DA model.


Assuntos
Armas Biológicas , Substâncias para a Guerra Química/análise , Bactérias/isolamento & purificação , Meios de Cultura , Análise Discriminante , Lasers , Solventes , Análise Espectral/métodos , Análise Espectral/normas , Vírus/isolamento & purificação
15.
Anal Bioanal Chem ; 395(2): 283-300, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19418042

RESUMO

In this review we discuss the application of laser-induced breakdown spectroscopy (LIBS) to the problem of detection of residues of explosives. Research in this area presented in open literature is reviewed. Both laboratory and field-tested standoff LIBS instruments have been used to detect explosive materials. Recent advances in instrumentation and data analysis techniques are discussed, including the use of double-pulse LIBS to reduce air entrainment in the analytical plasma and the application of advanced chemometric techniques such as partial least-squares discriminant analysis to discriminate between residues of explosives and non-explosives on various surfaces. A number of challenges associated with detection of explosives residues using LIBS have been identified, along with their possible solutions. Several groups have investigated methods for improving the sensitivity and selectivity of LIBS for detection of explosives, including the use of femtosecond-pulse lasers, supplemental enhancement of the laser-induced plasma emission, and complementary orthogonal techniques. Despite the associated challenges, researchers have demonstrated the tremendous potential of LIBS for real-time detection of explosives residues at standoff distances.

16.
Opt Express ; 17(2): 419-25, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158854

RESUMO

Recently laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential technique for trace explosive detection. Typically LIBS is performed using nanosecond laser pulses. For this work, we have investigated the use of femtosecond laser pulses for explosive residue detection at two different fluences. Femtosecond laser pulses have previously been shown to provide several advantages for laser ablation and other LIBS applications. We have collected LIBS spectra of several bulk explosives and explosive residues at different pulse durations and energies. In contrast to previous femtosecond LIBS spectra of explosives, we have observed atomic emission peaks for the constituent elements of explosives - carbon, hydrogen, nitrogen, and oxygen. Preliminary results indicate that several advantages attributed to femtosecond pulses are not realized at higher laser fluences.

17.
Appl Spectrosc ; 62(4): 353-63, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18416891

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a promising technique for real-time chemical and biological warfare agent detection in the field. We have demonstrated the detection and discrimination of the biological warfare agent surrogates Bacillus subtilis (BG) (2% false negatives, 0% false positives) and ovalbumin (0% false negatives, 1% false positives) at 20 meters using standoff laser-induced breakdown spectroscopy (ST-LIBS) and linear correlation. Unknown interferent samples (not included in the model), samples on different substrates, and mixtures of BG and Arizona road dust have been classified with reasonable success using partial least squares discriminant analysis (PLS-DA). A few of the samples tested such as the soot (not included in the model) and the 25% BG:75% dust mixture resulted in a significant number of false positives or false negatives, respectively. Our preliminary results indicate that while LIBS is able to discriminate biomaterials with similar elemental compositions at standoff distances based on differences in key intensity ratios, further work is needed to reduce the number of false positives/negatives by refining the PLS-DA model to include a sufficient range of material classes and carefully selecting a detection threshold. In addition, we have demonstrated that LIBS can distinguish five different organophosphate nerve agent simulants at 20 meters, despite their similar stoichiometric formulas. Finally, a combined PLS-DA model for chemical, biological, and explosives detection using a single ST-LIBS sensor has been developed in order to demonstrate the potential of standoff LIBS for universal hazardous materials detection.


Assuntos
Microbiologia do Ar , Guerra Biológica , Guerra Química , Monitoramento Ambiental/métodos , Análise Espectral/métodos , Bacillus subtilis/isolamento & purificação , Análise Discriminante , Monitoramento Ambiental/instrumentação , Humanos , Lasers , Valor Preditivo dos Testes , Análise Espectral/instrumentação
18.
Appl Opt ; 47(31): G112-21, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122692

RESUMO

A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate the importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.

19.
Appl Opt ; 47(31): G48-57, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122702

RESUMO

The performance of a man-portable laser induced breakdown spectrometer was evaluated for the detection of biological powders on indoor office surfaces and wipe materials. Identification of pure unknown powders was performed by comparing against a library of spectra containing biological agent surrogates and confusant materials, such as dusts, diesel soot, natural and artificial sweeteners, and drink powders, using linear correlation analysis. Simple models constructed using a second technique, partial least squares discriminant analysis, successfully identified Bacillus subtilis (BG) spores on wipe materials and office surfaces. Furthermore, these models were able to identify BG on materials not used in the training of the model.


Assuntos
Monitoramento Ambiental/instrumentação , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Animais , Bacillus subtilis/metabolismo , Guerra Biológica/métodos , Poeira , Monitoramento Ambiental/métodos , Lasers , Modelos Estatísticos , Óptica e Fotônica , Tamanho da Partícula , Pós
20.
Appl Opt ; 47(31): G80-7, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122707

RESUMO

Laser-induced breakdown spectroscopy (LIBS) was used to discern between two biological agent surrogates (Bacillus atrophaeus and ovalbumin) and potential interferent compounds (mold spores, humic acid, house dust, and Arizona road dust). Multiple linear regression and neural network analysis models were constructed by using B. atrophaeus and ovalbumin spectra, and limits of detection were calculated. Classification of the agent surrogates' LIBS spectra was attempted by using a neural network model. False negative rates of 0% were observed for B. atrophaeus (100 colony forming units) spore spectra with the neural network model used for classification.


Assuntos
Bacillus/metabolismo , Ovalbumina/química , Pós , Análise Espectral/métodos , Calibragem , Poeira , Desenho de Equipamento , Tecnologia de Fibra Óptica , Humanos , Substâncias Húmicas , Lasers , Modelos Estatísticos , Redes Neurais de Computação , Óptica e Fotônica , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...