Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 321: 115907, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998532

RESUMO

A novel metal doped MgFe2O4@g-C3N4 (m-MF@CN) nanocomposite was synthesized by one-pot method using saprolite laterite nickel ore and urea as raw materials. The heterostructure was verified as an effective heterogeneous Fenton-like catalyst for degrading antibiotics including tetracycline, oxytetracycline and chlortetracycline hydrochloride, and the related catalytic mechanism was elaborated in detail. Under the optimum conditions, the m-MF@CN/H2O2/vis system exhibited superior photo-Fenton property (degradation efficiency of 93.15% within 30 min, TOC removal efficiency was as high as 60.54% within 120 min) and cycle stability for tetracycline removal. The combination of MgFe2O4 and g-C3N4 enhanced the absorption of visible light, and the energy level matched heterojunction promoted the separation of photogenerated electron-holes to accelerate the redox cycle of ≡Fe3+/≡Fe2+. Free radical quenching and electron spin resonance (ESR) analysis confirmed that O2- was the main active species, h+ and OH also played a synergistic role in the degrading reactions. Notably, a possible degradation pathway of tetracycline was proposed according to the intermediates produced in the reaction process. The one-step synthesized m-MF@CN nanocomposite catalysts possessed high catalytic performance, good stability and recoverability, which not only realized the high-value utilization of ore raw materials, but also provided a potential practical way for efficient treatment of antibiotic wastewater.


Assuntos
Antibacterianos , Nanocompostos , Catálise , Peróxido de Hidrogênio/química , Luz , Metais , Nanocompostos/química , Tetraciclina/química
2.
J Environ Manage ; 302(Pt B): 114119, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794052

RESUMO

Metal-doped MgFe2O4 spinel ferrite synthesized from saprolite laterite nickel ore was verified as an efficient heterogeneous Fenton-like catalyst for degrading antibiotics including tetracycline (TC) and metronidazole (MNZ) in a "catalyst/oxalic acid (H2C2O4)/visible light (vis)" system. The degradation efficiencies reached over 95% and total organic carbon (TOC) removal efficiencies were nearly 50% of the two antibiotics within 210 min, under the optimal conditions, especially 90% catalytic activity of the fresh catalyst was maintained after five cycles, suggesting the ferrite possessed excellent degrading performance, cycling stability and applicability. Moreover, the degradation mechanism and pathway of TC were elucidated in detail. Results revealed that the [≡Fe(C2O4)3]3- complex ions formed by octahedral Fe3+ in spinel ferrite with oxalate ions on the surface of MgFe2O4, played the key role in production of ·OH radicals which decomposed antibiotic TC into small molecules even mineralized in three pathways. Cost-effective preparation, high catalytic performance and long cycle life may accelerate the practical application of the heterogeneous Fenton-like catalyst.


Assuntos
Antibacterianos , Águas Residuárias , Catálise , Peróxido de Hidrogênio , Fenômenos Magnéticos
3.
J Environ Manage ; 283: 111941, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33503513

RESUMO

The heterogeneous Fenton-like catalyst (Mg,Cu,Ni)(Fe,Al)2O4 was synthesized via a coprecipitation method using laterite nickel ore leaching solution as raw material. The effects of CuCl2·2H2O addition and calcination temperature on the microstructures and degradation properties of the obtained products were investigated. Results showed that higher calcination temperature could promote the migration of Cu2+ ions from CuO to the spinel ferrite lattice and occupied octahedral sites. The degradation efficiencies (η) of various types of low-concentration dyes and tetracycline were higher than 95%, which was mainly due to the accelerated generation of OH radicals by the synergistic effect of Fe3+ and Cu2+ ions in octahedral sites of the formed (Mg,Cu,Ni)(Fe,Al)2O4. Moreover, after five consecutive degradation cycles, the η of RhB was still close to 100%, TOC removal efficiency was maintained around 40% and the concentrations of metallic ions in degraded solutions were all lower than the national effluent discharge standard (GB8978-1996), confirming the as-obtained (Mg,Cu,Ni)(Fe,Al)2O4 was an eco-friendly heterogeneous Fenton-like catalyst with excellent stability and reusability. This study may provide an effective reference for large scale preparing efficient heterogeneous Fenton-like catalysts from natural minerals in treating the wastewater contaminated by refractory organics.


Assuntos
Ferro , Níquel , Catálise , Peróxido de Hidrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...