Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 6444-6454, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357126

RESUMO

Three-photon fluorescence microscopic (3PFM) bioimaging is a promising imaging technique for visualizing the brain in its native environment thanks to its advantages of high spatial resolution and large imaging depth. However, developing fluorophores with strong three-photon absorption (3PA) and bright emission that meets the requirements for efficient three-photon fluorescence microscopic (3PFM) bioimaging is still challenging. Herein, four bright fluorophores with aggregation-induced emission features are facilely synthesized, and their powders exhibit high quantum yields of up to 56.4%. The intramolecular engineering of luminogens endows (E)-2-(benzo[d]thiazol-2-yl)-3-(7-(diphenylamino)-9-ethyl-9H-carbazol-2-yl)acrylonitrile (DCBT) molecules with bright near-infrared emission and large 3PA cross sections of up to 1.57 × 10-78 cm6 s2 photon-2 at 1550 nm, which is boosted by 3.6-fold to 5.61 × 10-78 cm6 s2 photon-2 in DCBT dots benefiting from the extensive intermolecular interactions in molecular stacking. DCBT dots are successfully applied for 3PFM imaging of brain vasculature on mice with a removed or intact skull, providing images with high spatial resolution, and even small capillaries can be recognized below the skull. This study will inspire more insights for developing advanced multiphoton absorbing materials for biomedical applications.


Assuntos
Corantes Fluorescentes , Fótons , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Crânio , Neuroimagem , Imagem Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA