Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 4447-4461, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35939466

RESUMO

In this article, we propose a unified framework to solve the following two challenging problems in incomplete multi-view representation learning: i) how to learn a consistent representation unifying different views, and ii) how to recover the missing views. To address the challenges, we provide an information theoretical framework under which the consistency learning and data recovery are treated as a whole. With the theoretical framework, we propose a novel objective function which jointly solves the aforementioned two problems and achieves a provable sufficient and minimal representation. In detail, the consistency learning is performed by maximizing the mutual information of different views through contrastive learning, and the missing views are recovered by minimizing the conditional entropy through dual prediction. To the best of our knowledge, this is one of the first works to theoretically unify the cross-view consistency learning and data recovery for representation learning. Extensive experimental results show that the proposed method remarkably outperforms 20 competitive multi-view learning methods on six datasets in terms of clustering, classification, and human action recognition. The code could be accessed from https://pengxi.me.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32809939

RESUMO

In this paper, we study two less-touched challenging problems in single image dehazing neural networks, namely, how to remove haze from a given image in an unsupervised and zeroshot manner. To the ends, we propose a novel method based on the idea of layer disentanglement by viewing a hazy image as the entanglement of several "simpler" layers, i.e., a hazy-free image layer, transmission map layer, and atmospheric light layer. The major advantages of the proposed ZID are two-fold. First, it is an unsupervised method that does not use any clean images including hazy-clean pairs as the ground-truth. Second, ZID is a "zero-shot" method, which just uses the observed single hazy image to perform learning and inference. In other words, it does not follow the conventional paradigm of training deep model on a large scale dataset. These two advantages enable our method to avoid the labor-intensive data collection and the domain shift issue of using the synthetic hazy images to address the real-world images. Extensive comparisons show the promising performance of our method compared with 15 approaches in the qualitative and quantitive evaluations. The source code could be found at www.pengxi.me.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...