Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(46): 9101-9114, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37990752

RESUMO

The rheological behavior and dynamics of a vesicle suspension, serving as a simplified model for red blood cells, are explored within a Poiseuille flow under the Stokes limit. Investigating vesicle response has led to the identification of novel solutions that complement previously documented forms like the parachute and slipper shapes. This study has brought to light the existence of alternative configurations, including a fully off-centered form and a multilobe structure. The study unveils the presence of two distinct branches associated with the slipper shape. One branch arises as a consequence of a supercritical bifurcation from the symmetric parachute shape, while the other emerges from a saddle-node bifurcation. Notably, the findings are represented through diagrams that display data collapsing harmoniously based on a combination of independent dimensionless parameters. Delving into the rheological implications, a remarkable observation emerges: the normalized viscosity (i.e. similar to intrinsic viscosity) exhibits a non-monotonic trend as a function of vesicle concentration. Initially, the normalized viscosity diminishes as the concentration increases, followed by a subsequent rise at higher concentrations. Noteworthy is the presence of a minimum value in the normalized viscosity at lower concentrations, aligning well with the concentrations observed in microcirculation scenarios. The intricate behavior of the normalized viscosity can be attributed to a delicate spatial arrangement within the suspension. Importantly, this trend echoes the observations made in a linear shear flow scenario, thereby underscoring the universality of the rheological behavior for confined suspensions.

2.
J R Soc Interface ; 20(204): 20230186, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37464803

RESUMO

ATP is not only an energy carrier but also serves as an important signalling molecule in many physiological processes. Abnormal ATP level in blood vessel is known to be related to several pathologies, such as inflammation, hypoxia and atherosclerosis. Using advanced numerical methods, we analysed ATP released by red blood cells (RBCs) and its degradation by endothelial cells (ECs) in a cat mesentery-inspired vascular network, accounting for RBC mutual interaction and interactions with vascular walls. Our analysis revealed a heterogeneous ATP distribution in the network, with higher concentrations in the cell-free layer, concentration peaks around bifurcations and heterogeneity among vessels of the same level. These patterns arise from the spatio-temporal organization of RBCs induced by the network geometry. It is further shown that an alteration of hematocrit and flow strength significantly affects ATP level as well as heterogeneity in the network. These findings constitute a first building block to elucidate the intricate nature of ATP patterns in vascular networks and the far reaching consequences for other biochemical signalling, such as calcium, by ECs.


Assuntos
Células Endoteliais , Eritrócitos , Células Endoteliais/metabolismo , Velocidade do Fluxo Sanguíneo/fisiologia , Eritrócitos/metabolismo , Microvasos/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Biomech Model Mechanobiol ; 22(1): 217-232, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36219362

RESUMO

Calcium is a ubiquitous molecule and second messenger that regulates many cellular functions ranging from exocytosis to cell proliferation at different time scales. In the vasculature, a constant adenosine triphosphate (ATP) concentration is maintained because of ATP released by red blood cells (RBCs). These ATP molecules continuously react with purinergic receptors on the surface of endothelial cells (ECs). Consequently, a cascade of chemical reactions are triggered that result in a transient cytoplasmic calcium (Ca[Formula: see text]), followed by return to its basal concentration. The mathematical models proposed in the literature are able to reproduce the transient peak. However, the trailing concentration is always higher than the basal cytoplasmic Ca[Formula: see text] concentrations, and the Ca[Formula: see text] concentration in endoplasmic reticulum (ER) remains lower than its initial concentration. This means that the intracellular homeostasis is not recovered. We propose, herein, a minimal model of calcium kinetics. We find that the desensitization of EC surface receptors due to phosphorylation and recycling plays a vital role in maintaining calcium homeostasis in the presence of a constant stimulus (ATP). The model is able to capture several experimental observations such as refilling of Ca[Formula: see text] in the ER, variation of cytoplasmic Ca[Formula: see text] transient peak in ECs, the resting cytoplasmic Ca[Formula: see text] concentration, the effect of removing ATP from the plasma on Ca[Formula: see text] homeostasis, and the saturation of cytoplasmic Ca[Formula: see text] transient peak with increase in ATP concentration. Direct confrontation with several experimental results is conducted. This work paves the way for systematic studies on coupling between blood flow and chemical signaling, and should contribute to a better understanding of the relation between (patho)physiological conditions and Ca[Formula: see text] kinetics.


Assuntos
Cálcio , Células Endoteliais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Modelos Teóricos , Transdução de Sinais , Homeostase , Sinalização do Cálcio/fisiologia
4.
Biophys J ; 120(21): 4819-4831, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547277

RESUMO

ATP release by red blood cells (RBCs) under shear stress (SS) plays a pivotal role in endothelial biochemical signaling cascades. The aim of this study is to investigate through numerical simulation how RBC spatiotemporal organization depends on flow and geometrical conditions to generate ATP patterns. Numerical simulations were conducted in a straight channel by considering both plasma and explicit presence of RBCs, their shape deformation and cell-cell interaction, and ATP release by RBCs. Two ATP release pathways through cell membrane are taken into account: pannexin 1 channel, sensitive to SS, and cystic fibrosis transmembrane conductance regulator, which responds to cell deformation. Several flow and hematocrit conditions are explored. The problem is solved by the lattice Boltzmann method. Application of SS to the RBC suspension triggers a nontrivial spatial RBC organization and ATP patterns. ATP localizes preferentially in the vicinity of the cell-free layer close to channel wall. Conditions for maximal ATP release per cell are identified, which depend on vessel size and hematocrit Ht. Increasing further Ht beyond optimum enhances the total ATP release but should degrade oxygen transport capacity, a compromise between an efficient ATP release and minimal blood dissipation. Moreover, ATP is boosted in capillaries, suggesting a vasomotor activity coordination throughout the resistance network.


Assuntos
Trifosfato de Adenosina , Eritrócitos , Simulação por Computador , Hematócrito , Estresse Mecânico
5.
Comput Methods Biomech Biomed Engin ; 22(5): 465-474, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714397

RESUMO

By using a three-dimensional continuum model, we simulate the shape memory of a red blood cell after the remove of external forces. The purpose of this study is to illustrate the effect of membrane reference state on cell behavior during the recovery process. The reference state of an elastic element is the geometry with zero stress. Since the cell membrane is composed of cytoskeleton and lipid bilayer, both the reference states of cytoskeleton (RSC) and lipid bilayer (RSL) are considered. Results show that a non-spherical RSC can result in shape memory. The energy barrier due to non-spherical RSC is determined by the ratio of the equator length to the meridian length of the RSC. Thus different RSCs can have similar energy barrier and leading to identical recovery response. A series of simulations of more intermediate RSCs show that the recovery time scale is inversely proportional to the energy barrier. Comparing to spherical RSL, a spheroid RSL contributes to the energy barrier and recovery time. Furthermore, we observe a folding recovery due to the biconcave RSL which is different from the tank treading recovery. These results may motivate novel numerical and experimental studies to determine the exact RSC and RSL.


Assuntos
Forma Celular , Membrana Eritrocítica/fisiologia , Eritrócitos/fisiologia , Simulação por Computador , Citoesqueleto/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Resistência ao Cisalhamento , Fatores de Tempo
6.
Proc Inst Mech Eng H ; 233(2): 267-278, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30760162

RESUMO

Physiological control of rotary blood pumps is becoming increasingly necessary for clinical use. In this study, the mean oxygen partial pressure in the upper airway was first quantitatively evaluated as a control objective for a rotary blood pump. A model-free predictive controller was designed based on this control objective. Then, the quantitative evaluation of the controller was implemented with a rotary blood pump model on a complete cardiovascular model incorporated with airway mechanics and gas exchange models. The results show that the controller maintained a mean oxygen partial pressure at a normal and constant level of 138 mmHg in the left heart failure condition and restored basic haemodynamics of blood circulation. A left ventricular contractility recovery condition was also replicated to assess the response of the controller, and a stable result was obtained. This study indicates the potential use of the oxygen partial pressure index during pulmonary gas exchange when developing a multi-objective physiological controller for rotary blood pumps.


Assuntos
Coração Auxiliar , Oxigênio/metabolismo , Troca Gasosa Pulmonar , Rotação , Modelos Biológicos , Pressão
7.
Biomed Eng Online ; 17(1): 142, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342521

RESUMO

Rotary blood pumps (RBPs) are the newest generation of ventricular assist devices. Although their continuous flow characteristics have been accepted widely, more and more research has focused on the pulsatile modulation of RBPs in an attempt to provide better perfusion. In this study, we investigated the effects of an axial RBP serving as the right ventricular assist device on pulmonary hemodynamics and gas exchange using a numerical method with a complete cardiovascular model along with airway mechanics and a gas exchange model. The RBP runs in both constant speed and synchronized pulsatile modes using speed modulation. Hemodynamics and airway O2 and CO2 partial pressures were obtained under normal physiological conditions, and right ventricle failure conditions with or without RBP. Our results showed that the pulsatile mode of the RBP could support right ventricular assist to restore most hemodynamics. Using speed modulation, both pulmonary arterial pressure and flow pulsatility were increased, while there was only very little effect on alveolar O2 and CO2 partial pressures. This study could provide basic insight into the influence of pulmonary hemodynamics and gas exchange with speed modulated right ventricular assist RBPs, which is concerned when designing their pulsatile control methods.


Assuntos
Coração Auxiliar , Hemodinâmica , Modelos Cardiovasculares , Artéria Pulmonar/fisiologia , Troca Gasosa Pulmonar , Fenômenos Biomecânicos , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...