Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 43(17): 4284-4287, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160708

RESUMO

We have developed a watt-level random laser at 532 nm. The laser is based on a 1064 nm random distributed ytterbium (Yb) gain-assisted fiber laser seed with a 0.35 nm linewidth and 900 mW polarized output power. A study for the optimal length of the random distributed mirror was carried out. A Yb-doped fiber master oscillator power amplifier architecture is used to amplify the random seeder laser without additional spectral broadening up to 20 W. By using a periodically poled lithium niobate crystal in a single-pass configuration, we generate in excess of 1 W random laser at 532 nm by second-harmonic generation (SHG) with an efficiency of 9%. The green random laser exhibits an instability <1%, an optical signal-to-noise ratio >70 dB, a 0.1 nm linewidth, and excellent beam quality.

2.
Opt Lett ; 42(21): 4557-4560, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088212

RESUMO

We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4% and a low relative intensity noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...