Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589815

RESUMO

BACKGROUND: Although cochlear implants can restore auditory inputs to deafferented auditory cortices, the quality of the sound signal transmitted to the brain is severely degraded, limiting functional outcomes in terms of speech perception and emotion perception. The latter deficit negatively impacts cochlear implant users' social integration and quality of life; however, emotion perception is not currently part of rehabilitation. Developing rehabilitation programs incorporating emotional cognition requires a deeper understanding of cochlear implant users' residual emotion perception abilities. METHODS: To identify the neural underpinnings of these residual abilities, we investigated whether machine learning techniques could be used to identify emotion-specific patterns of neural activity in cochlear implant users. Using existing electroencephalography data from 22 cochlear implant users, we employed a random forest classifier to establish if we could model and subsequently predict from participants' brain responses the auditory emotions (vocal and musical) presented to them. RESULTS: Our findings suggest that consistent emotion-specific biomarkers exist in cochlear implant users, which could be used to develop effective rehabilitation programs incorporating emotion perception training. CONCLUSIONS: This study highlights the potential of machine learning techniques to improve outcomes for cochlear implant users, particularly in terms of emotion perception.


Assuntos
Implantes Cocleares , Percepção da Fala , Humanos , Qualidade de Vida , Emoções , Eletroencefalografia
2.
Artigo em Inglês | MEDLINE | ID: mdl-34790885

RESUMO

Disability is an important and often overlooked component of diversity. Individuals with disabilities bring a rare perspective to science, technology, engineering, mathematics, and medicine (STEMM) because of their unique experiences approaching complex issues related to health and disability, navigating the healthcare system, creatively solving problems unfamiliar to many individuals without disabilities, managing time and resources that are limited by physical or mental constraints, and advocating for themselves and others in the disabled community. Yet, individuals with disabilities are underrepresented in STEMM. Professional organizations can address this underrepresentation by recruiting individuals with disabilities for leadership opportunities, easing financial burdens, providing equal access, fostering peer-mentor groups, and establishing a culture of equity and inclusion spanning all facets of diversity. We are a group of deaf and hard-of-hearing (D/HH) engineers, scientists, and clinicians, most of whom are active in clinical practice and/or auditory research. We have worked within our professional societies to improve access and inclusion for D/HH individuals and others with disabilities. We describe how different models of disability inform our understanding of disability as a form of diversity. We address heterogeneity within disabled communities, including intersectionality between disability and other forms of diversity. We highlight how the Association for Research in Otolaryngology has supported our efforts to reduce ableism and promote access and inclusion for D/HH individuals. We also discuss future directions and challenges. The tools and approaches discussed here can be applied by other professional organizations to include individuals with all forms of diversity in STEMM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...