Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1117975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143492

RESUMO

Human enterocolitis is frequently caused by the Gram-negative microaerobic bacterium Campylobacter jejuni. Macrolides (e.g., erythromycin) and fluoroquinolones (FQs) (e.g., ciprofloxacin) are the preferred antibiotics for the treatment of human campylobacteriosis. Rapid emergence of FQ-resistant (FQ-R) Campylobacter during treatment with FQ antimicrobials is well known to occur in poultry. Cattle is also an important reservoir of Campylobacter for humans, and FQ-R Campylobacter from cattle has become highly prevalent in recent years. Even though the selection pressure may have contributed to the expansion of FQ-R Campylobacter, the actual impact of this factor appears to be rather low. In this study, we examined the hypothesis that the fitness of FQ-R Campylobacter may have also played a role in the rise seen in FQ-R Campylobacter isolates by employing a series of in vitro experiments in MH broth and bovine fecal extract. First, it was shown that FQ-R and FQ-susceptible (FQ-S) C. jejuni strains of cattle origin had comparable growth rates when individually cultured in both MH broth and the fecal extract with no antibiotic present. Interestingly, FQ-R strains had small but statistically significant increases over FQ-S strains in growth in competition experiments performed in mixed cultures with no antibiotic present. Lastly, it was observed that FQ-S C. jejuni strains developed resistance to ciprofloxacin more readily at high initial bacterial cell density (107 CFU/mL) and when exposed to low levels of the antibiotic (2-4 µg/mL) compared with that at a low level of initial bacterial cell density (105 CFU/mL) and exposure to a high level of ciprofloxacin (20 µg/mL) in both MH broth and the fecal extract. Altogether, these findings indicate that even though FQ-R C. jejuni of cattle origin may have a slightly higher fitness advantage over the FQ-S population, the emergence of FQ-R mutants from susceptible strains is primarily dictated by the bacterial cell density and the antibiotic concentration exposed under in vitro condition. These observation may also provide plausible explanations for the high prevalence of FQ-R C. jejuni in cattle production due to its overall fit nature in the absence of antibiotic selection pressure and for the paucity of development of FQ-R C. jejuni in the cattle intestine in response to FQ-treatment, as observed in our recent studies.

2.
Antibiotics (Basel) ; 11(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36290067

RESUMO

Fluoroquinolone (FQ) resistance in a major foodborne bacterial pathogen, Campylobacter jejuni, derived from cattle has recently become prevalent and poses a significant public health concern. However, the underlying factors for this increase are not entirely clear. To evaluate the effect of enrofloxacin treatment on FQ-resistance development in C. jejuni, 35 commercial calves were equally divided into five groups (Groups 1-5) and were orally inoculated with FQ-susceptible (FQ-S) C. jejuni. Eight days later, Groups 4 and 5 were challenged with Mannheimia haemolytica via a transtracheal route to induce a respiratory disease; after 8 days, Groups 2, 3, 4, and 5 were injected subcutaneously with enrofloxacin (7.5 mg/kg for Groups 2 and 4, and 12.5 mg/kg for Groups 3 and 5). Colonization levels by FQ-resistant (FQ-R) and FQ-S Campylobacter in rectal feces were determined via differential culture throughout the experiment. Before oral inoculation with C. jejuni, only five calves were naturally colonized by Campylobacter, four of which were also colonized by FQ-R C. jejuni (three in Group 1 and one in Group 3). Soon after the oral inoculation, almost all calves in the groups became stably colonized by FQ-S C. jejuni (~3-6 log10 CFU/g), except that the four calves that were pre-colonized before inoculation remained positive with both FQ-R and FQ-S C. jejuni. Following enrofloxacin administration, C. jejuni colonization declined sharply and rapidly in all treated groups to undetectable levels; however, the vast majority of the animals were recolonized by C. jejuni at comparable levels 72 h after the treatment. Notably, no FQ-R C. jejuni was detected in any of the calves that received enrofloxacin, regardless of the drug dose used or disease status of the animals. The lack of detection of FQ-R C. jejuni was likely due to the localized high concentration of the antibiotic in the intestine, which may have prevented the emergence of the FQ-R mutant. These findings indicate that single-dose enrofloxacin use in cattle poses a low risk for selection of de novo FQ-R mutants in C. jejuni.

3.
Front Microbiol ; 13: 928346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875575

RESUMO

Bovine mastitis is an inflammation of the udder tissue parenchyma that causes pathological changes in the glandular tissue and abnormalities in milk leading to significant economic losses to the dairy industry across the world. Mammary pathogenic Escherichia (E.) coli (MPEC) is one of the main etiologic agents of acute clinical mastitis in dairy cattle. MPEC strains have virulence attributes to resist the host innate defenses and thrive in the mammary gland environment. The association between specific virulence factors of MPEC with the severity of mastitis in cattle is not fully understood. Furthermore, the indiscriminate use of antibiotics to treat mastitis has resulted in antimicrobial resistance to all major antibiotic classes in MPEC. A thorough understanding of MPEC's pathogenesis and antimicrobial susceptibility pattern is required to develop better interventions to reduce mastitis incidence and prevalence in cattle and the environment. This review compiles important information on mastitis caused by MPEC (e.g., types of mastitis, host immune response, diagnosis, treatment, and control of the disease) as well as the current knowledge on MPEC virulence factors, antimicrobial resistance, and the dilemma of MPEC as a new pathotype. The information provided in this review is critical to identifying gaps in knowledge that will guide future studies to better design diagnostic, prevent, and develop therapeutic interventions for this significant dairy disease.

4.
Antibiotics (Basel) ; 11(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35453282

RESUMO

Campylobacter is a leading cause of foodborne gastroenteritis. Recent studies have indicated a rise in fluoroquinolone-resistant (FQ-R) Campylobacter in cattle, where FQ is used to control bovine respiratory disease (BRD). To assess the effect of danofloxacin treatment on the development of FQ-resistance in C. jejuni, 30 commercial calves were divided into Group 1, Group 2, and Group 3 (n = 10), and were all inoculated orally with FQ-susceptible (FQ-S) C. jejuni; seven days later, Group 3 was challenged with transtracheal Mannheimia haemolytica, and one week later, Group 2 and Group 3 were injected subcutaneously with danofloxacin. Rectal feces were collected to determine relative percentages of FQ-R Campylobacter via culture. Before oral inoculation with C. jejuni, 87% of calves were naturally colonized by FQ-R C. jejuni. Two days after the inoculation, FQ-R C. jejuni decreased substantially in the majority of calves. Within 24 h of danofloxacin injection, almost all C. jejuni populations shifted to an FQ-R phenotype in both FQ-treated groups, which was only transitory, as FQ-S strains became predominant during later periods. Genotyping indicated that the spike seen in FQ-R C. jejuni populations following the injection was due mainly to enrichment of preexisting FQ-R C. jejuni, rather than development of de novo FQ resistance in susceptible strains. These results provide important insights into the dynamic changes of FQ-resistant Campylobacter in cattle in response to FQ treatment.

5.
Pathogens ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809410

RESUMO

To aid development of phage therapy against Campylobacter, we investigated the distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) systems in fluoroquinolone (FQ)-resistant Campylobacter jejuni. A total of 100 FQ-resistant C. jejuni strains from different sources were analyzed by PCR and DNA sequencing to determine resistance-conferring mutation in the gyrA gene and the presence of various CRISPR systems. All but one isolate harbored 1-5 point mutations in gyrA, and the most common mutation was the Thr86Ile change. Ninety-five isolates were positive with the CRISPR PCR, and spacer sequences were found in 86 of them. Among the 292 spacer sequences identified in this study, 204 shared 93-100% nucleotide homology to Campylobacter phage D10, 44 showed 100% homology to Campylobacter phage CP39, and 3 had 100% homology with Campylobacter phage CJIE4-5. The remaining 41 spacer sequences did not match with any phages in the database. Based on the results, it was inferred that the FQ-resistant C. jejuni isolates analyzed in this study were potentially resistant to Campylobacter phages D10, CP39, and CJIE4-5 as well as some unidentified phages. These phages should be excluded from cocktails of phages that may be utilized to treat FQ-resistant Campylobacter.

6.
Microb Drug Resist ; 27(3): 424-432, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32721263

RESUMO

Colistin is one of the most effective antibiotics against multidrug resistant Gram-negative bacteria. However, the recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes is considered a serious antimicrobial resistance challenge worldwide. In this study, we report detection of an mcr-1 carrying Escherichia coli isolate (named ATAVET mcr-1 Turkey) from retail raw chicken meat in Turkey. Of the 11 (from 500 total tested) phenotypically colistin-resistant isolates, 1 was shown to carry the mcr-1 gene by PCR. Whole-genome sequencing indicated that mcr-1 was located on a ∼13 kb-long contig that was almost identical to the corresponding part in pZJ1635, an IncI2 plasmid encoding mcr-1 in the same genetic context in another E. coli strain. In addition, ATAVET mcr-1 Turkey harbored blaCTX-M-8, qnrB19, mdf(A), tet(A), sul2, aph(3″)-Ib, aph(6)-Id, and floR resistance genes. Phylogenetic analysis based on whole genome and multilocus sequence typing indicated that ATAVET mcr-1 Turkey was more closely related to mcr-1 carrying E. coli isolates from food and human clinical samples previously reported from different parts of the world than to those from Turkey. These findings further emphasize the worldwide emergence and spread of mcr meditated colistin resistance in bacteria with zoonotic potential within animals and the food chain.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Carne/microbiologia , Animais , Doenças das Aves/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Proteínas de Escherichia coli/genética , Genótipo , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fenótipo , Plasmídeos , Turquia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...