Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477667

RESUMO

Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-ß-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-ß-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.

2.
J Sep Sci ; 43(14): 2925-2935, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32384201

RESUMO

Ascorbic acid is a powerful antioxidant compound involved in many biological functions, and a chronic deficiency is at the origin of scurvy disease. A simple, rapid, and cost-effective capillary electrophoresis method was developed for the separation and simultaneous quantification of ascorbic acid and the major degradation products: dehydroascorbic acid, furfural, and furoic acid. Systematic optimization of the conditions was performed that enabled baseline separation of the compounds in less than 10 min. In addition to simultaneous quantification of ascorbic acid alongside to the degradation products, stability studies demonstrated the possibility using capillary electrophoresis to separate and identify the major degradation products. Thus, high-resolution tandem mass spectrometry experiments were conducted in order to identify an unknown degradation product separated by capillary electrophoresis and significantly present in degraded samples. Comparison of mass spectrometry data and capillary electrophoresis electropherograms allowed to identify unambiguously trihydroxy-keto-valeraldehyde. Finally, capillary electrophoresis was successfully applied to evaluate the composition of different pharmaceutical preparation of ascorbic acid. Results showed the excellent performance of the capillary electrophoresis method due to the separation of excipients from the compounds of interest, which demonstrated the relevance of using an electrophoretic separation in order to perform comprehensive stability studies of ascorbic acid.


Assuntos
Ácido Ascórbico/análise , Eletroforese Capilar , Espectrometria de Massas em Tandem
3.
Drug Dev Ind Pharm ; 42(12): 1917-1927, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27595299

RESUMO

Dexmedetomidine is an alpha-2 adrenoceptor agonist and has been used as a general anesthetic, sedative and analgesic for about 30 years. The aim of this paper is to review the pharmacokinetics and pharmacodynamics of dexmedetomidine, evaluate physiological factors that may affect the pharmacokinetics of dexmedetomidine, and summarize the pharmacodynamics of dexmedetomidine at different plasma levels. The pharmacokinetic parameters reported in previous studies according to noncompartmental analyses or population modeling results are compared. We concluded that the pharmacokinetic profile can be adequately described by a two-compartment model in population pharmacokinetic modeling. Body weight, height, albumin level, cardiac output, disease condition and other factors were considered to have significant influence on the clearance and/or distribution volume in different population pharmacokinetic models. The pharmacological effects of dexmedetomidine, such as sedation, heart rate reduction and biphasic change of blood pressure, vary at different plasma levels. These findings provide a reference for individualizing the dose of dexmedetomidine and achieving the desired pharmacological effects in clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...