Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 26, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182748

RESUMO

Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Melanoma/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas/genética , Pele
2.
Cell Death Dis ; 9(6): 678, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880805

RESUMO

Patient selection for PI3K-targeted solid cancer treatment was based on the PIK3CA/PTEN mutational status. However, it is increasingly clear that this is not a good predictor of the response of breast cancer cells to the anti-proliferative effect of PI3K inhibitors, indicating that isoform(s) other than p110α may modulate cancer cells sensitivity to PI3K inhibition. Surprisingly, we found that although no mutations in the p110δ subunit have been detected thus far in breast cancer, the expression of p110δ becomes gradually elevated during human breast cancer progression from grade I to grade III. Moreover, pharmacological inactivation of p110δ in mice abrogated the formation of tumours and the recruitment of macrophages to tumour sites and strongly affected the survival, proliferation and apoptosis of grafted tumour cells. Pharmacological inactivation of p110δ in mice with defective macrophages or in mice with normal macrophages but grafted with p110δ-lacking tumours suppressed only partly tumour growth, indicating a requisite role of p110δ in both macrophages and cancer cells in tumour progression. Adoptive transfer of δD910A/D910A macrophages into mice with defected macrophages suppressed tumour growth, eliminated the recruitment of macrophages to tumour sites and prevented metastasis compared with mice that received WT macrophages further establishing that inactivation of p110δ in macrophage prevents tumour progression. Our work provides the first in vivo evidence for a critical role of p110δ in cancer cells and macrophages during solid tumour growth and may pave the way for the use of p110δ inhibitors in breast cancer treatment.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Progressão da Doença , Macrófagos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/metabolismo , Quinazolinas/farmacologia
3.
Front Oncol ; 5: 166, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284192

RESUMO

The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...