Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1283491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075279

RESUMO

Using brain activity directly as input for assistive tool control can circumventmuscular dysfunction and increase functional independence for physically impaired people. The motor cortex is commonly targeted for recordings, while growing evidence shows that there exists decodable movement-related neural activity outside of the motor cortex. Several decoding studies demonstrated significant decoding from distributed areas separately. Here, we combine information from all recorded non-motor brain areas and decode executed and imagined movements using a Riemannian decoder. We recorded neural activity from 8 epilepsy patients implanted with stereotactic-electroencephalographic electrodes (sEEG), while they performed an executed and imagined grasping tasks. Before decoding, we excluded all contacts in or adjacent to the central sulcus. The decoder extracts a low-dimensional representation of varying number of components, and classified move/no-move using a minimum-distance-to-geometric-mean Riemannian classifier. We show that executed and imagined movements can be decoded from distributed non-motor brain areas using a Riemannian decoder, reaching an area under the receiver operator characteristic of 0.83 ± 0.11. Furthermore, we highlight the distributedness of the movement-related neural activity, as no single brain area is the main driver of performance. Our decoding results demonstrate a first application of a Riemannian decoder on sEEG data and show that it is able to decode from distributed brain-wide recordings outside of the motor cortex. This brief report highlights the perspective to explore motor-related neural activity beyond the motor cortex, as many areas contain decodable information.

2.
Sci Rep ; 13(1): 14021, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640768

RESUMO

Automatic wheelchairs directly controlled by brain activity could provide autonomy to severely paralyzed individuals. Current approaches mostly rely on non-invasive measures of brain activity and translate individual commands into wheelchair movements. For example, an imagined movement of the right hand would steer the wheelchair to the right. No research has investigated decoding higher-order cognitive processes to accomplish wheelchair control. We envision an invasive neural prosthetic that could provide input for wheelchair control by decoding navigational intent from hippocampal signals. Navigation has been extensively investigated in hippocampal recordings, but not for the development of neural prostheses. Here we show that it is possible to train a decoder to classify virtual-movement speeds from hippocampal signals recorded during a virtual-navigation task. These results represent the first step toward exploring the feasibility of an invasive hippocampal BCI for wheelchair control.


Assuntos
Interfaces Cérebro-Computador , Humanos , Mãos , Hipocampo , Intenção , Movimento
3.
Sci Data ; 9(1): 434, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869138

RESUMO

Speech production is an intricate process involving a large number of muscles and cognitive processes. The neural processes underlying speech production are not completely understood. As speech is a uniquely human ability, it can not be investigated in animal models. High-fidelity human data can only be obtained in clinical settings and is therefore not easily available to all researchers. Here, we provide a dataset of 10 participants reading out individual words while we measured intracranial EEG from a total of 1103 electrodes. The data, with its high temporal resolution and coverage of a large variety of cortical and sub-cortical brain regions, can help in understanding the speech production process better. Simultaneously, the data can be used to test speech decoding and synthesis approaches from neural data to develop speech Brain-Computer Interfaces and speech neuroprostheses.


Assuntos
Fala , Eletrocorticografia , Eletroencefalografia , Humanos , Leitura , Fala/fisiologia
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6045-6048, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892495

RESUMO

Neurological disorders can lead to significant impairments in speech communication and, in severe cases, cause the complete loss of the ability to speak. Brain-Computer Interfaces have shown promise as an alternative communication modality by directly transforming neural activity of speech processes into a textual or audible representations. Previous studies investigating such speech neuroprostheses relied on electrocorticography (ECoG) or microelectrode arrays that acquire neural signals from superficial areas on the cortex. While both measurement methods have demonstrated successful speech decoding, they do not capture activity from deeper brain structures and this activity has therefore not been harnessed for speech-related BCIs. In this study, we bridge this gap by adapting a previously presented decoding pipeline for speech synthesis based on ECoG signals to implanted depth electrodes (sEEG). For this purpose, we propose a multi-input convolutional neural network that extracts speech-related activity separately for each electrode shaft and estimates spectral coefficients to reconstruct an audible waveform. We evaluate our approach on open-loop data from 5 patients who conducted a recitation task of Dutch utterances. We achieve correlations of up to 0.80 between original and reconstructed speech spectrograms, which are significantly above chance level for all patients (p < 0.001). Our results indicate that sEEG can yield similar speech decoding performance to prior ECoG studies and is a promising modality for speech BCIs.


Assuntos
Interfaces Cérebro-Computador , Fala , Eletrocorticografia , Eletrodos Implantados , Humanos , Redes Neurais de Computação
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6098-6101, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892508

RESUMO

Brain-Computer Interfaces (BCIs) that decode a patient's movement intention to control a prosthetic device could restore some independence to paralyzed patients. An important step on the road towards naturalistic prosthetic control is to decode movement continuously with low-latency. BCIs based on intracortical micro-arrays provide continuous control of robotic arms, but require a minor craniotomy. Surface recordings of neural activity using EEG have made great advances over the last years, but suffer from high noise levels and large intra-session variance. Here, we investigate the use of minimally invasive recordings using stereotactically implanted EEG (sEEG). These electrodes provide a sparse sampling across many brain regions. So far, promising decoding results have been presented using data measured from the subthalamic nucleus or trial-to-trial based methods using depth electrodes. In this work, we demonstrate that grasping movements can continuously be decoded using sEEG electrodes, as well. Beta and high-gamma activity was extracted from eight participants performing a grasping task. We demonstrate above chance level decoding of movement vs rest and left vs right, from both frequency bands with accuracies up to 0.94 AUC. The vastly different electrode locations between participants lead to large variability. In the future, we hope that sEEG recordings will provide additional information for the decoding process in neuroprostheses.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletrodos , Força da Mão , Humanos , Movimento
6.
Commun Biol ; 4(1): 1055, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556793

RESUMO

Speech neuroprosthetics aim to provide a natural communication channel to individuals who are unable to speak due to physical or neurological impairments. Real-time synthesis of acoustic speech directly from measured neural activity could enable natural conversations and notably improve quality of life, particularly for individuals who have severely limited means of communication. Recent advances in decoding approaches have led to high quality reconstructions of acoustic speech from invasively measured neural activity. However, most prior research utilizes data collected during open-loop experiments of articulated speech, which might not directly translate to imagined speech processes. Here, we present an approach that synthesizes audible speech in real-time for both imagined and whispered speech conditions. Using a participant implanted with stereotactic depth electrodes, we were able to reliably generate audible speech in real-time. The decoding models rely predominately on frontal activity suggesting that speech processes have similar representations when vocalized, whispered, or imagined. While reconstructed audio is not yet intelligible, our real-time synthesis approach represents an essential step towards investigating how patients will learn to operate a closed-loop speech neuroprosthesis based on imagined speech.


Assuntos
Interfaces Cérebro-Computador , Eletrodos Implantados/estatística & dados numéricos , Próteses Neurais/estatística & dados numéricos , Qualidade de Vida , Fala , Feminino , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...