Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(10): e1012592, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39378227

RESUMO

Neutrophils rapidly infiltrate sites of infection and possess several microbicidal strategies, such as neutrophil extracellular traps release and phagocytosis. Enhanced neutrophil infiltration is associated with higher susceptibility to Leishmania infection, but neutrophil effector response contribution to this phenotype is uncertain. Here, we show that neutrophils from susceptible BALB/c mice (B/c) produce more NETs in response to Leishmania major than those from resistant C57BL/6 mice (B6), which are more phagocytic. The absence of neutrophil elastase contributes to phagocytosis regulation. Microarray analysis shows enrichment of genes involved in NET formation (mpo, pi3kcg, il1b) in B/c, while B6 shows upregulation of genes involved in phagocytosis and cell death (Arhgap12, casp9, mlkl, FasL). scRNA-seq in L. major-infected B6 showed heterogeneity in the pool of intralesional neutrophils, and we identified the N1 subset as the putative subpopulation involved with phagocytosis. In vivo, imaging validates NET formation in infected B/c ears where NETing neutrophils were mainly uninfected cells. NET digestion in vivo augmented parasite lymphatic drainage. Hence, a balance between NET formation and phagocytosis in neutrophils may contribute to the divergent phenotype observed in these mice.


Assuntos
Leishmania major , Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neutrófilos , Fagocitose , Animais , Leishmania major/imunologia , Neutrófilos/imunologia , Camundongos , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Armadilhas Extracelulares/imunologia , Suscetibilidade a Doenças , Feminino
2.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526868

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Humanos , Receptor 4 Toll-Like/genética , Receptor PAR-2/genética , Doença de Chagas/genética , Doença de Chagas/parasitologia , Antivirais/farmacologia , Inibidores de Serina Proteinase/farmacologia , Inflamação , Serina , Serina Endopeptidases/genética
3.
Curr Issues Mol Biol ; 44(5): 2089-2106, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678670

RESUMO

Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.

4.
Biochem Cell Biol ; 100(3): 246-265, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443139

RESUMO

Macrophages play critical roles in inflammation and defense against pathogens, as well as in the return to tissue homeostasis. Macrophage subpopulations displaying antagonistic phenotypes are generally classified as proinflammatory M1, implicated in antipathogen and antitumoral activities, or as anti-inflammatory M2, associated with tissue repair. Granulocytic and monocytic myeloid-derived suppressor cells recruited from the bone marrow to tissues and phagocytosis of apoptotic neutrophils can attenuate macrophage microbicidal activity. Here, we showed that bone marrow neutrophils, but not thioglycollate-recruited neutrophils, directly suppress the responses of macrophages that were previously committed to an inflammatory phenotype. Cocultures of inflammatory macrophages with bone marrow CD11b+Ly6Ghi granulocytes led to reduced release of IL-1ß, TNF-α, and IL-6 by macrophages after lipopolysaccharide stimulation. The suppressive activity was unrelated to granulocyte apoptosis or to secreted factors and required cell-to-cell contact. The suppressive effect was paralleled by reduction in the nuclear levels of the NF-κB p65 subunit, but not of the p50 subunit. Furthermore, bone marrow granulocytes decreased the phagocytic activity of macrophages and their capacity to kill intracellular Escherichia coli. Taken together, these results show that bone marrow granulocytes can function as suppressors of the proinflammatory activity and microbial-killing responses of macrophages.


Assuntos
Medula Óssea , Macrófagos , Granulócitos , Humanos , Inflamação , Fagocitose
5.
Front Immunol ; 13: 801182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154115

RESUMO

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.


Assuntos
Interferon-alfa/metabolismo , Interferon beta/metabolismo , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , eIF-2 Quinase/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Interferon-alfa/genética , Interferon beta/genética , Leishmaniose Visceral/parasitologia , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/imunologia , eIF-2 Quinase/genética
6.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614101

RESUMO

The protozoan Trypanosoma brucei rhodesiense causes Human African Trypanosomiasis, also known as sleeping sickness, and penetrates the central nervous system, leading to meningoencephalitis. The Cathepsin L-like cysteine peptidase of T. b. rhodesiense has been implicated in parasite penetration of the blood-brain barrier and its activity is modulated by the chagasin-family endogenous inhibitor of cysteine peptidases (ICP). To investigate the role of ICP in T. b. rhodesiense bloodstream form, ICP-null (Δicp) mutants were generated, and lines re-expressing ICP (Δicp:ICP). Lysates of Δicp displayed increased E-64-sensitive cysteine peptidase activity and the mutant parasites traversed human brain microvascular endothelial cell (HBMEC) monolayers in vitro more efficiently. Δicp induced E-selectin in HBMECs, leading to the adherence of higher numbers of human neutrophils. In C57BL/6 mice, no Δicp parasites could be detected in the blood after 6 days, while mice infected with wild-type (WT) or Δicp:ICP displayed high parasitemia, peaking at day 12. In mice infected with Δicp, there was increased recruitment of monocytes to the site of inoculation and higher levels of IFN-γ in the spleen. At day 14, mice infected with Δicp exhibited higher preservation of the CD4+, CD8+, and CD19+ populations in the spleen, accompanied by sustained high IFN-γ, while NK1.1+ populations receded nearly to the levels of uninfected controls. We propose that ICP helps to downregulate inflammatory responses that contribute to the control of infection.


Assuntos
Proteínas de Protozoários , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Animais , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/parasitologia , Virulência , Proteínas de Protozoários/metabolismo
7.
PLoS Negl Trop Dis ; 15(6): e0009526, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153047

RESUMO

Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.


Assuntos
Inibidores de Serina Proteinase/metabolismo , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/imunologia , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais , Feminino , Inflamação , Camundongos Endogâmicos C57BL , Inibidores de Serina Proteinase/genética , Baço/parasitologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA