Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 8(5): 491-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534721

RESUMO

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genética
2.
Sci Rep ; 10(1): 13995, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814806

RESUMO

To minimize the cost of sample preparation and genotyping, most genebank genomics studies in self-pollinating species are conducted on a single individual to represent an accession, which may be heterogeneous with larger than expected intra-accession genetic variation. Here, we compared various population genetics parameters among six DNA (leaf) sampling methods on 90 accessions representing a wild species (O. barthii), cultivated and landraces (O. glaberrima, O. sativa), and improved varieties derived through interspecific hybridizations. A total of 1,527 DNA samples were genotyped with 46,818 polymorphic single nucleotide polymorphisms (SNPs) using DArTseq. Various statistical analyses were performed on eleven datasets corresponding to 5 plants per accession individually and in a bulk (two sets), 10 plants individually and in a bulk (two sets), all 15 plants individually (one set), and a randomly sampled individual repeated six times (six sets). Overall, we arrived at broadly similar conclusions across 11 datasets in terms of SNP polymorphism, heterozygosity/heterogeneity, diversity indices, concordance among genetic dissimilarity matrices, population structure, and genetic differentiation; there were, however, a few discrepancies between some pairs of datasets. Detailed results of each sampling method, the concordance in their outputs, and the technical and cost implications of each method were discussed.


Assuntos
Variação Genética , Técnicas de Genotipagem/métodos , Oryza/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , DNA de Plantas/análise , DNA de Plantas/genética , Genética Populacional/métodos , Genoma de Planta/genética , Genótipo , Oryza/classificação , Reprodutibilidade dos Testes , Especificidade da Espécie
3.
Theor Appl Genet ; 132(4): 1145-1158, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578434

RESUMO

KEY MESSAGE: The extent of molecular diversity parameters across three rice species was compared using large germplasm collection genotyped with genomewide SNPs and SNPs that fell within selective sweep regions. Previous studies conducted on limited number of accessions have reported very low genetic variation in African rice (Oryza glaberrima Steud.) as compared to its wild progenitor (O. barthii A. Chev.) and to Asian rice (O. sativa L.). Here, we characterized a large collection of African rice and compared its molecular diversity indices and population structure with the two other species using genomewide single nucleotide polymorphisms (SNPs) and SNPs that mapped within selective sweeps. A total of 3245 samples representing African rice (2358), Asian rice (772) and O. barthii (115) were genotyped with 26,073 physically mapped SNPs. Using all SNPs, the level of marker polymorphism, average genetic distance and nucleotide diversity in African rice accounted for 59.1%, 63.2% and 37.1% of that of O. barthii, respectively. SNP polymorphism and overall nucleotide diversity of the African rice accounted for 20.1-32.1 and 16.3-37.3% of that of the Asian rice, respectively. We identified 780 SNPs that fell within 37 candidate selective sweeps in African rice, which were distributed across all 12 rice chromosomes. Nucleotide diversity of the African rice estimated from the 780 SNPs was 8.3 × 10-4, which is not only 20-fold smaller than the value estimated from all genomewide SNPs (π = 1.6 × 10-2), but also accounted for just 4.1%, 0.9% and 2.1% of that of O. barthii, lowland Asian rice and upland Asian rice, respectively. The genotype data generated for a large collection of rice accessions conserved at the AfricaRice genebank will be highly useful for the global rice community and promote germplasm use.


Assuntos
Variação Genética , Genética Populacional , Oryza/genética , Ásia , Cromossomos de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Filogenia , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
4.
Mol Breed ; 38(11): 131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416368

RESUMO

Species misclassification (misidentification) and handling errors have been frequently reported in various plant species conserved at diverse gene banks, which could restrict use of germplasm for correct purpose. The objectives of the present study were to (i) determine the extent of genotyping error (reproducibility) on DArTseq-based single-nucleotide polymorphisms (SNPs); (ii) determine the proportion of misclassified accessions across 3134 samples representing three African rice species complex (Oryza glaberrima, O. barthii, and O. longistaminata) and an Asian rice (O. sativa), which are conserved at the AfricaRice gene bank; and (iii) develop species- and sub-species (ecotype)-specific diagnostic SNP markers for rapid and low-cost quality control (QC) analysis. Genotyping error estimated from 15 accessions, each replicated from 2 to 16 times, varied from 0.2 to 3.1%, with an overall average of 0.8%. Using a total of 3134 accessions genotyped with 31,739 SNPs, the proportion of misclassified samples was 3.1% (97 of the 3134 accessions). Excluding the 97 misclassified accessions, we identified a total of 332 diagnostic SNPs that clearly discriminated the three indigenous African species complex from Asian rice (156 SNPs), O. longistaminata accessions from both O. barthii and O. glaberrima (131 SNPs), and O. sativa spp. indica from O. sativa spp. japonica (45 SNPs). Using chromosomal position, minor allele frequency, and polymorphic information content as selection criteria, we recommended a subset of 24 to 36 of the 332 diagnostic SNPs for routine QC genotyping, which would be highly useful in determining the genetic identity of each species and correct human errors during routine gene bank operations.

5.
Front Plant Sci ; 8: 1748, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093721

RESUMO

The sequence variation present in accessions conserved in genebanks can best be used in plant improvement when it is properly characterized and published. Using low cost and high density single nucleotide polymorphism (SNP) assays, the genetic diversity, population structure, and relatedness between pairs of accessions can be quickly assessed. This information is relevant for different purposes, including creating core and mini-core sets that represent the maximum possible genetic variation contained in the whole collection. Here, we studied the genetic variation and population structure of 2,179 Oryza glaberrima Steud. accessions conserved at the AfricaRice genebank using 27,560 DArTseq-based SNPs. Only 14% (3,834 of 27,560) of the SNPs were polymorphic across the 2,179 accessions, which is much lower than diversity reported in other Oryza species. Genetic distance between pairs of accessions varied from 0.005 to 0.306, with 1.5% of the pairs nearly identical, 8.0% of the pairs similar, 78.1% of the pairs moderately distant, and 12.4% of the pairs very distant. The number of redundant accessions that contribute little or no new genetic variation to the O. glaberrima collection was very low. Using the maximum length sub-tree method, we propose a subset of 1,330 and 350 accessions to represent a core and mini-core collection, respectively. The core and mini-core sets accounted for ~61 and 16%, respectively, of the whole collection, and captured 97-99% of the SNP polymorphism and nearly all allele and genotype frequencies observed in the whole O. glaberrima collection available at the AfricaRice genebank. Cluster, principal component and model-based population structure analyses all divided the 2,179 accessions into five groups, based roughly on country of origin but less so on ecology. The first, third and fourth groups consisted of accessions primarily from Liberia, Nigeria, and Mali, respectively; the second group consisted primarily of accessions from Togo and Nigeria; and the fifth and smallest group was a mixture of accessions from multiple countries. Analysis of molecular variance showed between 10.8 and 28.9% of the variation among groups with the remaining 71.1-89.2% attributable to differences within groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...