Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(2-1): 022119, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950453

RESUMO

The Curzon-Ahlborn efficiency has long served as the definite upper bound for the thermal efficiency at maximum output power, and has thus shaped the development of finite-time thermodynamics. In this paper, we repeal the ruling consensus according to which it has a genuine universal character that can be derived from linear irreversible thermodynamics. We demonstrate that the Curzon-Ahlborn efficiency should instead properly be associated with a particular case of nonlinear heat engines, and we derive a generalized expression for the efficiency at maximum power beyond the restrictive case of linear models.

2.
Phys Rev E ; 94(3-1): 032136, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739733

RESUMO

We present the closed-loop approach to linear nonequilibrium thermodynamics considering a generic heat engine dissipatively connected to two temperature baths. The system is usually quite generally characterized by two parameters: the output power P and the conversion efficiency η, to which we add a third one, the working frequency ω. We establish that a detailed understanding of the effects of the dissipative coupling on the energy conversion process requires only knowing two quantities: the system's feedback factor ß and its open-loop gain A_{0}, which product A_{0}ß characterizes the interplay between the efficiency, the output power, and the operating rate of the system. By raising the abstract hermodynamic analysis to a higher level, the feedback loop approach provides a versatile and economical, hence fairly efficient, tool for the study of any conversion engine operation for which a feedback factor can be defined.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25122257

RESUMO

We show how the formalism used for thermoelectric transport may be adapted to Smoluchowski's seminal thought experiment, also known as Feynman's ratchet and pawl system. Our analysis rests on the notion of useful flux, which for a thermoelectric system is the electrical current and for Feynman's ratchet is the effective jump frequency. Our approach yields original insight into the derivation and analysis of the system's properties. In particular we define an entropy per tooth in analogy with the entropy per carrier or Seebeck coefficient, and we derive the analog to Kelvin's second relation for Feynman's ratchet. Owing to the formal similarity between the heat fluxes balance equations for a thermoelectric generator (TEG) and those for Feynman's ratchet, we introduce a distribution parameter γ that quantifies the amount of heat that flows through the cold and hot sides of both heat engines. While it is well established that γ = 1/2 for a TEG, it is equal to 1 for Feynman's ratchet. This implies that no heat may be rejected in the cold reservoir for the latter case. Further, the analysis of the efficiency at maximum power shows that the so-called Feynman efficiency corresponds to that of an exoreversible engine, with γ = 1. Then, turning to the nonlinear regime, we generalize the approach based on the convection picture and introduce two different types of resistance to distinguish the dynamical behavior of the considered system from its ability to dissipate energy. We finally put forth the strong similarity between the original Feynman ratchet and a mesoscopic thermoelectric generator with a single conducting channel.


Assuntos
Fontes de Energia Elétrica , Temperatura Alta , Modelos Teóricos , Condutividade Térmica
4.
Artigo em Inglês | MEDLINE | ID: mdl-24032805

RESUMO

We present an in-depth analysis of the sometimes understated role of the principle of energy conservation in linear irreversible thermodynamics. Our case study is that of a thermoelectric generator (TEG), which is a heat engine of choice in irreversible thermodynamics, owing to the coupling between the electrical and heat fluxes. We show why Onsager's reciprocal relations must be considered locally and how internal dissipative processes emerge from the extension of these relations to a global scale: The linear behavior of a heat engine at the local scale is associated with a dissipation process that must partake in the global energy balance. We discuss the consequences of internal dissipations on the so-called efficiency at maximum power, in the light of our comparative analyses of exoreversibility and endoreversibility on the one hand and of two classes of heat engines, autonomous and periodically driven, on the other hand. Finally, basing our analysis on energy conservation, we also discuss recent works which claim the possibility to overcome the traditional boundaries on efficiency imposed by finite-time thermodynamics in thermoelectric systems with broken time-reversal symmetry; this we do by introducing a "thermal" thermopower and an "electrical" thermopower which permits an analysis of the thermoelectric response of the TEG considering a possible dissymmetry between the electrical/thermal and the thermal/electrical couplings.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041144, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22680454

RESUMO

We study the efficiency at maximum power of two coupled heat engines, using thermoelectric generators (TEGs) as engines. Assuming that the heat and electric charge fluxes in the TEGs are strongly coupled, we simulate numerically the dependence of the behavior of the global system on the electrical load resistance of each generator in order to obtain the working condition that permits maximization of the output power. It turns out that this condition is not unique. We derive a simple analytic expression giving the relation between the electrical load resistance of each generator permitting output power maximization. We then focus on the efficiency at maximum power (EMP) of the whole system to demonstrate that the Curzon-Ahlborn efficiency may not always be recovered: The EMP varies with the specific working conditions of each generator but remains in the range predicted by irreversible thermodynamics theory. We discuss our results in light of nonideal Carnot engine behavior.


Assuntos
Transferência de Energia , Calefação/métodos , Modelos Teóricos , Termodinâmica , Simulação por Computador , Temperatura Alta
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 1): 031116, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587047

RESUMO

Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.


Assuntos
Fontes de Energia Elétrica , Transferência de Energia , Temperatura Alta , Modelos Teóricos , Termodinâmica , Simulação por Computador , Campos Eletromagnéticos
7.
Phys Rev Lett ; 90(8): 087002, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633451

RESUMO

We report small-angle neutron scattering measurements on the vortex lattice in a PbIn polycrystal in the presence of an applied current. Using the rocking curves as a probe of the distribution of current in the sample, we observe that vortex pinning is due to the surface roughness. This leads to a surface current that persists in the flux-flow region. We show the influence of surface treatments on the distribution of this current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...