Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 20(1): 4, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066353

RESUMO

INTRODUCTION: Roses are one of the most essential ornamental flowers and are commonly used in perfumery, cosmetics, and food. They are rich in bioactive compounds, which are of interest for therapeutic effects. OBJECTIVES: The objective of this study was to understand the kinds of changes that occur between the nocturnal and diurnal metabolism of rose and to suggest hypotheses. METHODS: Reversed-phase ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry or triple quadrupole mass spectrometry (TQ MS/MS) was used for nontargeted metabolomics and hormonal profiling respectively. For metabolite annotation, accurate mass spectra were compared with those in databases. RESULTS: The hormonal profile of flowers showed an increase in jasmonate at night, while that of leaves indicated an increase in the salicylic acid pathway. Nontargeted analyses of the flower revealed a switch in the plant's defense mechanisms from glycosylated metabolites during the day to acid metabolites at night. In leaves, a significant decrease in flavonoids was observed at night in favor of acid metabolism to maintain a level of protection. Moreover, it might be possible to place back some of the annotated molecules on the shikimate pathway. CONCLUSION: The influence of day and night on the metabolome of rose flowers and leaves has been clearly demonstrated. The hormonal modulations occurring during the night and at day are consistent with the plant circadian cycle. A proposed management of the sesquiterpenoid and triterpenoid biosynthetic pathway may explain these changes in the flower. In leaves, the metabolic differences may reflect night-time regulation in favor of the salicylic acid pathway.


Assuntos
Metabolômica , Rosa , Metabolômica/métodos , Espectrometria de Massas em Tandem , Metaboloma , Flores/metabolismo , Ácido Salicílico/metabolismo
2.
Front Pharmacol ; 14: 1303198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186646

RESUMO

Background: Aframomum sp. is a genus of plants in the Zingiberaceae family. It includes several species, some of which are used in cosmetics for their various properties, making them useful in skincare products, particularly for anti-aging, moisturizing, and brightening the skin. However, to date, there is no experimental evidence on its natural extracts obtained or modified using microorganisms (bio-fermentation) as an anti-aging agent. Objective: The present study aimed to evaluate the antiaging effect of a Bio-fermented Aframomum angustifolium (BAA) extract on 3D bioprinted skin equivalent. Methods: The consortium of microorganisms contained Komagataeibacter, Gluconobacter, Acetobacter, Saccharomyces, Torulaspora, Brettanomyces, Hanseniaspora, Leuconostoc, Lactobacillus, Schizosaccharomyces. It was developed on a media containing water, sugar, and infused black tea leaves. The seeds of Aframomum angustifolium previously grounded were mixed with the culture medium, and the ferments in growth; this fermentation step lasted 10 days. Then, the medium was collected and filtered (0.22 µm) to obtain the BAA extract. To enhance our comprehension of the impact of BAA extract on skin aging, we developed skin equivalents using bio-printing methods with the presence or absence of keratinocyte stem cells (KSC). These skin equivalents were derived from keratinocytes obtained from both a middle-aged donor, with and without KSC. Moreover, we examined the effects of treating the KSC-depleted skin equivalents with Bio-fermented Aframomum angustifolium (BAA) extract for 5 days. Skin equivalents containing KSC-depleted keratinocytes exhibited histological characteristics typical of aged skin and were compared to skin equivalents derived from young donors. Results: The BAA extract contained specific organic acids such as lactic, gluconic, succinic acid and polyphenols. KSC-depleted skin equivalents that were treated with BAA extract exhibited higher specular reflection, indicating better hydration of the stratum corneum, higher mitotic activity in the epidermis basal layer, improved dermal-epidermal connectivity, and increased rigidity of the dermal-epidermal junction compared to non-treated KSC-depleted equivalents. BAA extract treatments also resulted in changes at the dermis level, with an increase in total collagen and a decrease in global laxity, suggesting that this extract could help maintain youthful-looking skin. Conclusion: In summary, our findings indicated that BAA extract treatments have pleiotropic beneficial effects on skin equivalents and that the bio-fermentation provides new biological activities to this plant.

3.
Mycorrhiza ; 30(1): 5-22, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31982950

RESUMO

Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.


Assuntos
Micorrizas , Orchidaceae , Endófitos , Fungos , Proteômica , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...