Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2259: 25-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687707

RESUMO

Laser capture microdissection (LCM) provides a fast, specific, and versatile method to isolate and enrich cells in mixed populations and/or subcellular structures, for further proteomic study. Furthermore, mass spectrometry (MS) can quickly and accurately generate differential protein expression profiles from small amounts of samples. Although cellular protrusions-such as tunneling nanotubes, filopodia, growth cones, invadopodia, etc.-are involved in essential physiological and pathological actions such as phagocytosis or cancer-cell invasion, the study of their protein composition is progressing slowly due to their fragility and transient nature. The method described herein, combining LCM and MS, has been designed to identify the proteome of different cellular protrusions. First, cells are fixed with a novel fixative method to preserve the cellular protrusions, which are isolated by LCM. Next, the extraction of proteins from the enriched sample is optimized to de-crosslink the fixative agent to improve the identification of proteins by MS. The efficient protein recovery and high sample quality of this method enable the protein profiling of these small and diverse subcellular structures.


Assuntos
Extensões da Superfície Celular/química , Microdissecção e Captura a Laser/métodos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Animais , Linhagem Celular , Fixadores , Humanos
2.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866487

RESUMO

Cell⁻cell communication is vital to multicellular organisms, and distinct types of cellular protrusions play critical roles during development, cell signaling, and the spreading of pathogens and cancer. The differences in the structure and protein composition of these different types of protrusions and their specific functions have not been elucidated due to the lack of a method for their specific isolation and analysis. In this paper, we described, for the first time, a method to specifically isolate distinct protrusion subtypes, based on their morphological structures or fluorescent markers, using laser capture microdissection (LCM). Combined with a unique fixation and protein extraction protocol, we pushed the limits of microproteomics and demonstrate that proteins from LCM-isolated protrusions can successfully and reproducibly be identified by mass spectrometry using ultra-high field Orbitrap technologies. Our method confirmed that different types of protrusions have distinct proteomes and it promises to advance the characterization and the understanding of these unique structures to shed light on their possible role in health and disease.


Assuntos
Extensões da Superfície Celular/metabolismo , Proteômica/métodos , Comunicação Celular , Células Cultivadas , Humanos , Microdissecção e Captura a Laser , Espectrometria de Massas , Microscopia , Anotação de Sequência Molecular
3.
Nat Commun ; 10(1): 342, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664666

RESUMO

The orchestration of intercellular communication is essential for multicellular organisms. One mechanism by which cells communicate is through long, actin-rich membranous protrusions called tunneling nanotubes (TNTs), which allow the intercellular transport of various cargoes, between the cytoplasm of distant cells in vitro and in vivo. With most studies failing to establish their structural identity and examine whether they are truly open-ended organelles, there is a need to study the anatomy of TNTs at the nanometer resolution. Here, we use correlative FIB-SEM, light- and cryo-electron microscopy approaches to elucidate the structural organization of neuronal TNTs. Our data indicate that they are composed of a bundle of open-ended individual tunneling nanotubes (iTNTs) that are held together by threads labeled with anti-N-Cadherin antibodies. iTNTs are filled with parallel actin bundles on which different membrane-bound compartments and mitochondria appear to transfer. These results provide evidence that neuronal TNTs have distinct structural features compared to other cell protrusions.


Assuntos
Extensões da Superfície Celular/ultraestrutura , Neurônios/ultraestrutura , Organelas/ultraestrutura , Animais , Transporte Biológico , Catecolaminas/metabolismo , Linhagem Celular , Extensões da Superfície Celular/metabolismo , Microscopia Crioeletrônica/métodos , Humanos , Camundongos , Neurônios/metabolismo , Organelas/metabolismo
4.
J Cell Commun Signal ; 13(2): 209-224, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30443895

RESUMO

Tunneling nanotubes (TNTs) are intercellular structures that allow for the passage of vesicles, organelles, genomic material, pathogenic proteins and pathogens. The unconventional actin molecular motor protein Myosin-X (Myo10) is a known inducer of TNTs in neuronal cells, yet its role in other cell types has not been examined. The Nef HIV-1 accessory protein is critical for HIV-1 pathogenesis and can self-disseminate in culture via TNTs. Understanding its intercellular spreading mechanism could reveal ways to control its damaging effects during HIV-1 infection. Our goal in this study was to characterize the intercellular transport mechanism of Nef from macrophages to T cells. We demonstrate that Nef increases TNTs in a Myo10-dependent manner in macrophages and observed the transfer of Nef via TNTs from macrophages to T cells. To quantify this transfer mechanism, we established an indirect flow cytometry assay. Since Nef expression in T cells down-regulates the surface receptor CD4, we correlated the decrease in CD4 to the transfer of Nef between these cells. Thus, we co-cultured macrophages expressing varying levels of Nef with a T cell line expressing high levels of CD4 and quantified the changes in CD4 surface expression resulting from Nef transfer. We demonstrate that Nef transfer occurs via a cell-to-cell dependent mechanism that directly correlates with the presence of Myo10-dependent TNTs. Thus, we show that Nef can regulate Myo10 expression, thereby inducing TNT formation, resulting in its own transfer from macrophages to T cells. In addition, we demonstrate that up-regulation of Myo10 induced by Nef also occurs in human monocyte derived macrophages during HIV-1 infection.

5.
Proteomics ; 18(11): e1700294, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29579344

RESUMO

Microproteomic studies have improved our knowledge of cell biology. Yet, with mass spectrometry (MS) analysis, accuracy can be lost for protein identification and quantification when using heterogeneous samples. Laser capture microdissection (LCM) allows for the enrichment of specific subsets of cells to study their proteome; however, sample fixation is necessary. Unfortunately, fixation hampers MS results due to protein cross-linking. The aim of this study was to identify both a fixation protocol and an extraction method that returns the best yield of proteins for downstream MS analysis, while preserving cellular structures. We compared glutaraldehyde (GLU), a common fixative to preserve cells, to dithiobispropionimidate (DTBP), a cleavable cross-linker. Our DTBP fixation/extraction protocol greatly increased the protein recovery. In fact, while 1000 GLU fixed cells returned only 159 unique protein hits, from 1464 unique peptides of 1994 unique collected spectra, 1000 DTBP fixed cells resulted in 567 unique collected protein hits, from 7542 unique peptides, of 10,401 unique collected spectra. That is, a 3.57-fold increase in protein hits, 5.15-fold increase in unique peptides, and a 5.22-fold increase in unique collected spectra. Overall, the novel protocol introduced here allows for a very efficient protein recovery and good sample quality for MS after sample collection using LCM.


Assuntos
Fixadores/química , Microdissecção e Captura a Laser/métodos , Proteoma/metabolismo , Manejo de Espécimes/métodos , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos/métodos , Células Cultivadas , Glutaral/química , Humanos , Imidoésteres/química , Proteoma/análise
6.
Front Mol Neurosci ; 10: 333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089870

RESUMO

Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.

7.
J Cell Sci ; 126(Pt 19): 4424-35, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886947

RESUMO

Cell-to-cell communication is essential in multicellular organisms. Tunneling nanotubes (TNTs) have emerged as a new type of intercellular spreading mechanism allowing the transport of various signals, organelles and pathogens. Here, we study the role of the unconventional molecular motor myosin-X (Myo10) in the formation of functional TNTs within neuronal CAD cells. Myo10 protein expression increases the number of TNTs and the transfer of vesicles between co-cultured cells. We also show that TNT formation requires both the motor and tail domains of the protein, and identify the F2 lobe of the FERM domain within the Myo10 tail as necessary for TNT formation. Taken together, these results indicate that, in neuronal cells, TNTs can arise from a subset of Myo10-driven dorsal filopodia, independent of its binding to integrins and N-cadherins. In addition our data highlight the existence of different mechanisms for the establishment and regulation of TNTs in neuronal cells and other cell types.


Assuntos
Comunicação Celular/fisiologia , Miosinas/metabolismo , Nanotubos , Neurônios/citologia , Neurônios/metabolismo , Animais , Transporte Biológico , Camundongos , Pseudópodes/metabolismo , Transfecção
8.
Front Physiol ; 3: 72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514537

RESUMO

Cell-to-cell communication and exchange of materials are vital processes in multicellular organisms during cell development, cell repair, and cell survival. In neuronal and immunological cells, intercellular transmission between neighboring cells occurs via different complex junctions or synapses. Recently, long distance intercellular connections in mammalian cells called tunneling nanotubes (TNTs) have been described. These structures have been found in numerous cell types and shown to transfer signals and cytosolic materials between distant cells, suggesting that they might play a prominent role in intercellular trafficking. However, these cellular connections are very heterogeneous in both structure and function, giving rise to more questions than answers as to their nature and role as intercellular conduits. To better understand and characterize the functions of TNTs, we have highlighted here the latest discoveries regarding the formation, structure, and role of TNTs in cell-to-cell spreading of various signals and materials. We first gathered information regarding their formation with an emphasis on the triggering mechanisms observed, such as stress and potentially important proteins and/or signaling pathways. We then describe the various types of transfer mechanisms, in relation to signals and cargoes that have been shown recently to take advantage of these structures for intercellular transfer. Because a number of pathogens were shown to use these membrane bridges to spread between cells we also draw attention to specific studies that point toward a role for TNTs in pathogen spreading. In particular we discuss the possible role that TNTs might play in prion spreading, and speculate on their role in neurological diseases in general.

9.
Biochem J ; 431(2): 189-98, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20670217

RESUMO

TSEs (transmissible spongiform encephalopathies) are neurodegenerative diseases caused by pathogenic isoforms (PrPSc) of the host-encoded PrPc (cellular prion protein). After consumption of contaminated food, PrPSc deposits rapidly accumulate in lymphoid tissues before invasion of the CNS (central nervous system). However, the mechanisms of prion spreading from the periphery to the nervous system are still unclear. In the present study, we investigated the role of DCs (dendritic cells) in the spreading of prion infection to neuronal cells. First, we determined that BMDCs (bone-marrow-derived DCs) rapidly uptake PrPSc after exposure to infected brain homogenate. Next, we observed a progressive catabolism of the internalized prion aggregates. Similar experiments performed with BMDCs isolated from KO (knockout) mice or mice overexpressing PrP (tga20) indicate that both PrPSc uptake and catabolism are independent of PrPc expression in these cells. Finally, using co-cultures of prion-loaded BMDCs and cerebellar neurons, we characterized the transfer of the prion protein and the resulting infection of the neuronal cultures. Interestingly, the transfer of PrPSc was triggered by direct cell-cell contact. As a consequence, BMDCs retained the prion protein when cultured alone, and no transfer to the recipient neurons was observed when a filter separated the two cultures or when neurons were exposed to the BMDC-conditioned medium. Additionally, fixed BMDCs also failed to transfer prion infectivity to neurons, suggesting an active transport of prion aggregates, in accordance with a role of TNTs (tunnelling nanotubes) observed in the co-cultures.


Assuntos
Células Dendríticas/metabolismo , Neurônios/metabolismo , Príons/metabolismo , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Células Dendríticas/citologia , Endocitose , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Proteínas PrPSc/metabolismo , Príons/patogenicidade , Processamento de Proteína Pós-Traducional , Transporte Proteico , Fatores de Tempo
10.
PLoS Pathog ; 5(9): e1000591, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19779568

RESUMO

HIV-1-containing internal compartments are readily detected in images of thin sections from infected cells using conventional transmission electron microscopy, but the origin, connectivity, and 3D distribution of these compartments has remained controversial. Here, we report the 3D distribution of viruses in HIV-1-infected primary human macrophages using cryo-electron tomography and ion-abrasion scanning electron microscopy (IA-SEM), a recently developed approach for nanoscale 3D imaging of whole cells. Using IA-SEM, we show the presence of an extensive network of HIV-1-containing tubular compartments in infected macrophages, with diameters of approximately 150-200 nm, and lengths of up to approximately 5 microm that extend to the cell surface from vesicular compartments that contain assembling HIV-1 virions. These types of surface-connected tubular compartments are not observed in T cells infected with the 29/31 KE Gag-matrix mutant where the virus is targeted to multi-vesicular bodies and released into the extracellular medium. IA-SEM imaging also allows visualization of large sheet-like structures that extend outward from the surfaces of macrophages, which may bend and fold back to allow continual creation of viral compartments and virion-lined channels. This potential mechanism for efficient virus trafficking between the cell surface and interior may represent a subversion of pre-existing vesicular machinery for antigen capture, processing, sequestration, and presentation.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Macrófagos/ultraestrutura , Macrófagos/virologia , Microscopia Eletrônica de Varredura/métodos , Infecções por HIV/patologia , Humanos , Imageamento Tridimensional , Células Jurkat , Gravação em Vídeo , Vírion/fisiologia
11.
Prion ; 3(2): 94-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19471116

RESUMO

The discovery of tunnelling nanotubes (TNTs) and their proposed role in long intercellular transport of organelles, bacteria and viruses have led us to examine their potential role during prion spreading. We have recently shown that these membrane bridges can form between neuronal cells, as well as between dendritic cells and primary neurons and that both endogenous and exogenous PrP(Sc) appear to traffic through these structures between infected and non-infected cells. Furthermore, prion infection can be efficiently transmitted from infected dendritic cells to primary neurons only in co-culture conditions permissive for TNT formation. Therefore, we propose a role for TNTs during prion spreading from the periphery to the central nervous system (CNS). Here, we discuss some of the key steps where TNTs might play a role during prion neuroinvasion.


Assuntos
Comunicação Celular/fisiologia , Príons/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Humanos , Nanotubos de Peptídeos , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico/fisiologia
12.
Nat Cell Biol ; 11(3): 328-36, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19198598

RESUMO

In variant Creutzfeldt-Jakob disease, prions (PrP(Sc)) enter the body with contaminated foodstuffs and can spread from the intestinal entry site to the central nervous system (CNS) by intercellular transfer from the lymphoid system to the peripheral nervous system (PNS). Although several means and different cell types have been proposed to have a role, the mechanism of cell-to-cell spreading remains elusive. Tunnelling nanotubes (TNTs) have been identified between cells, both in vitro and in vivo, and may represent a conserved means of cell-to-cell communication. Here we show that TNTs allow transfer of exogenous and endogenous PrP(Sc) between infected and naive neuronal CAD cells. Significantly, transfer of endogenous PrP(Sc) aggregates was detected exclusively when cells chronically infected with the 139A mouse prion strain were connected to mouse CAD cells by means of TNTs, identifying TNTs as an efficient route for PrP(Sc) spreading in neuronal cells. In addition, we detected the transfer of labelled PrP(Sc) from bone marrow-derived dendritic cells to primary neurons connected through TNTs. Because dendritic cells can interact with peripheral neurons in lymphoid organs, TNT-mediated intercellular transfer would allow neurons to transport prions retrogradely to the CNS. We therefore propose that TNTs are involved in the spreading of PrP(Sc) within neurons in the CNS and from the peripheral site of entry to the PNS by neuroimmune interactions with dendritic cells.


Assuntos
Espaço Extracelular/metabolismo , Movimento , Príons/metabolismo , Aminas/metabolismo , Animais , Células da Medula Óssea/metabolismo , Encéfalo/patologia , Comunicação Celular , Linhagem Celular , Vesículas Citoplasmáticas/metabolismo , Células Dendríticas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Proteínas PrPSc/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
13.
Traffic ; 9(7): 1101-15, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18410485

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a group of diseases of infectious, sporadic and genetic origin, found in higher organisms and caused by the pathological form of the prion protein. The inheritable subgroup of TSEs is linked to insertional or point mutations in the prion gene prnp, which favour its misfolding and are passed on to offspring in an autosomal-dominant fashion. The large majority of patients with these diseases are heterozygous for the prnp gene, leading to the coexpression of the wild-type (wt) (PrP(C)) and the mutant forms (PrPmut) in the carriers of these mutations. To mimic this situation in vitro, we produced Fischer rat thyroid cells coexpressing PrPwt alongside mutant versions of mouse PrP including A117V, E200K and T182A relevant to the human TSE diseases Gestmann-Sträussler-Scheinker (GSS) disease and familial Creutzfeldt-Jakob disease (fCJD). We found that coexpression of mutant PrP with wt proteins does not affect the glycosylation pattern or the biochemical characteristics of either protein. However, FRET and co-immunoprecipitation experiments suggest an interaction occurring between the wt and mutant proteins. Furthermore, by comparing the intracellular localization and detergent-resistant membrane (DRM) association in single- and double-expressing clones, we found changes in the intracellular/surface ratio and an increased sequestration of both proteins in DRMs, a site believed to be involved in the pathological conversion (or protection thereof) of the prion protein. We, therefore, propose that the mutant forms alter the subcellular localization and the membrane environment of the wt protein in co-transfected cells. These effects may play a role in the development of these diseases.


Assuntos
Membrana Celular/metabolismo , Detergentes/farmacologia , Príons/genética , Animais , Proteínas de Bactérias/metabolismo , Biotinilação , Centrifugação com Gradiente de Concentração , Transferência Ressonante de Energia de Fluorescência , Complexo de Golgi/metabolismo , Heterozigoto , Lipídeos/química , Proteínas Luminescentes/metabolismo , Camundongos , Mutação , Mutação Puntual , Transfecção
14.
PLoS Pathog ; 4(3): e1000015, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18369466

RESUMO

HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag). Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.


Assuntos
HIV-1/metabolismo , Macrófagos/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , Endossomos/metabolismo , Endossomos/virologia , HIV-1/genética , HIV-1/patogenicidade , Células HeLa , Humanos , Células Jurkat , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Transfecção , Montagem de Vírus , Replicação Viral/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
15.
Protein Expr Purif ; 56(1): 8-19, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17658270

RESUMO

Telomerase is a specialized reverse transcriptase that catalyzes the addition of telomeric repeats, TTAGGG in all vertebrates, to the ends of chromosomes. The lack of recombinant purified human telomerase reverse transcriptase (hTERT) has hampered biochemical and structural studies. The primary problem in generating active recombinant hTERT appears to be protein folding, which may be due to the fact that telomerase is a multi-component ribonucleoprotein complex. When expressed in most heterologous systems, recombinant hTERT is largely insoluble. Here we describe a protein expression system using a baculovirus vector that can be used to prepare properly folded, enzymatically active, hTERT. In this system, the recombinant hTERT is directed to the endoplasmic reticulum (ER), which is rich in chaperones. This increases the expression of soluble recombinant hTERT, promoting proper folding using intrinsic ER chaperone proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Telomerase/biossíntese , Animais , Baculoviridae/genética , Vetores Genéticos , Humanos , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Spodoptera , Telomerase/química
16.
Org Lett ; 8(22): 5165-8, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17048869

RESUMO

Replacing the Pro6 in the p6(Gag)-derived 9-mer "P-E-P-T-A-P-P-E-E" with N-substituted glycine (NSG) residues is problematic. However, incorporation of hydrazone amides ("peptoid hydrazones") can be readily achieved in library fashion. Furthermore, reduction of these hydrazones to N-substituted "peptoid hydrazides" affords a facile route to library diversification. This approach is demonstrated by application to Tsg101-binding compounds designed as potential HIV budding antagonists. [reaction: see text]


Assuntos
Fármacos Anti-HIV/síntese química , Proteínas de Ligação a DNA/metabolismo , Glicina/análogos & derivados , Glicina/química , HIV-1/efeitos dos fármacos , Peptoides/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Fármacos Anti-HIV/química , Complexos Endossomais de Distribuição Requeridos para Transporte , Hidrazinas/química , Hidrazonas/química , Oligopeptídeos/química , Biblioteca de Peptídeos , Prolina/química
18.
Cell Biochem Biophys ; 40(2): 123-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15054219

RESUMO

Lipid domains are acquiring increasing importance in our understanding of the regulation of several key functions in living cells. We present here a discussion of the physical mechanisms driving the phase separation of membrane lipid components that make up these domains, including phase behavior of the lipids and the role of cholesterol. In addition, we discuss phenomena that regulate domain geometry and dimensions. We present evidence that these mechanisms apply to the regulation of domains in intact cells. For example, the observation that physiologically functional microdomains present at 37 degrees C aggregate into macrodomains in human blood platelets when they are chilled below membrane lipid phase transition temperatures is predictable from the known behavior of the constituent lipids in vitro. Finally, we show that the principles developed from studies on these lipids in model systems can be used to develop techniques to stabilize the physiological, resting microdomain structure of platelets during freeze-drying. These latter findings have immediate applications in clinical medicine for the development of methods for storing platelets for therapeutic use.


Assuntos
Plaquetas/química , Plaquetas/fisiologia , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Animais , Plaquetas/efeitos dos fármacos , Humanos , Fluidez de Membrana/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Conformação Molecular , Transição de Fase/efeitos dos fármacos , Temperatura , Trealose/química , Trealose/farmacologia
19.
Biochim Biophys Acta ; 1660(1-2): 7-15, 2004 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-14757215

RESUMO

When human platelets are chilled below 20 degrees C, they undergo cold-induced activation. We have previously shown that cold activation correlates with the main phospholipid phase transition (10-20 degrees C) and induces the formation of large raft aggregates. In addition, we found that the glycoprotein CD36 is selectively enriched within detergent-resistant membranes (DRMs) of cold-activated platelets and is extremely sensitive to treatment with methyl-beta-cyclodextrin (MbetaCD). Here, we further studied the partitioning of downstream signaling molecules within the DRMs. We found that the phospholipase Cgamma2 (PLCgamma2) and the protein tyrosine kinase Syk do not partition exclusively within the DRMs, but their distribution is perturbed by cholesterol extraction. In addition, PLCgamma2 activity increases in cold-activated cells compared to resting platelets and is entirely inhibited after treatment with MbetaCD. The Src-family protein tyrosine kinases Src and Lyn preferentially partition within the DRMs and are profoundly affected by removal of cholesterol. These kinases are non-redundant in cold-activation. CD36, active Lyn, along with inactive Src and PLCgamma2 co-localize in small raft complexes in resting platelets. Cold-activation induces raft aggregation, resulting in changes in the activity of these proteins. These data suggest a crucial role of raft aggregation in the early events of cold-induced platelet activation.


Assuntos
Temperatura Baixa , Ciclodextrinas , Microdomínios da Membrana/fisiologia , Ativação Plaquetária/fisiologia , beta-Ciclodextrinas , Antígenos CD36/química , Antígenos CD36/metabolismo , Membrana Celular/química , Membrana Celular/fisiologia , Humanos , Microdomínios da Membrana/química , Modelos Moleculares , Fosfolipase C gama , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo , Quinases da Família src/química , Quinases da Família src/metabolismo
20.
Cell ; 116(4): 577-89, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14980224

RESUMO

Cholesterol and sphingolipid-enriched "rafts" have long been proposed as platforms for the sorting of specific membrane components including glycosyl-phosphatidylinositol-anchored proteins (GPI-APs), however, their existence and physical properties have been controversial. Here, we investigate the size of lipid-dependent organization of GPI-APs in live cells, using homo and hetero-FRET-based experiments, combined with theoretical modeling. These studies reveal an unexpected organization wherein cell surface GPI-APs are present as monomers and a smaller fraction (20%-40%) as nanoscale (<5 nm) cholesterol-sensitive clusters. These clusters are composed of at most four molecules and accommodate diverse GPI-AP species; crosslinking GPI-APs segregates them from preexisting GPI-AP clusters and prevents endocytosis of the crosslinked species via a GPI-AP-selective pinocytic pathway. In conjunction with an analysis of the statistical distribution of the clusters, these observations suggest a mechanism for functional lipid-dependent clustering of GPI-APs.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Animais , Células CHO , Células Cultivadas , Colesterol/metabolismo , Cricetinae , Reagentes de Ligações Cruzadas/farmacologia , Endocitose , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde , Processamento de Imagem Assistida por Computador , Luz , Metabolismo dos Lipídeos , Lipídeos/química , Proteínas Luminescentes/metabolismo , Microdomínios da Membrana/química , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...