Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686044

RESUMO

Current research indicates that altered dopamine (DA) transmission in the striatum contributes to impulsivity and novelty-seeking, and it may mediate a link concerning a higher susceptibility to drug abuse. Whether increased susceptibility to drug abuse results from a hyperdopaminergic or hypodopaminergic state is still debated. Here, we simultaneously tracked changes in DA D2/3 receptor (D2/3R) availability and amphetamine-(AMPH)-induced DA release in relation to impulsivity and novelty-seeking prior to, and following, cocaine self-administration (SA) in Roman high- (RHA) and low- (RLA) avoidance rats. We found that high-impulsive/high novelty-seeking RHA rats exhibited lower D2/3R availabilities and higher AMPH-induced DA release in the striatum that predicted higher levels of cocaine intake compared with RLAs. Cocaine SA did not alter striatal D2/3R availability or impulsivity in RHA or RLA rats. Critically, cocaine exposure led to a baseline-dependent blunting of stimulated DA release in high-impulsive/high novelty-seeking RHA rats only, and to a baseline-dependent increase in novelty-seeking in low-impulsive/low novelty-seeking RLA rats only. Altogether, we propose that susceptibility to drug abuse results from an innate hyper-responsive DA system, promoting impulsive action and novelty-seeking, and producing stronger initial drug-reinforcing effects that contribute to the initiation and perpetuation of drug use. However, with repeated cocaine use, a tolerance to drug-induced striatal DA elevations develops, leading to a compensatory increase in drug consumption to overcome the reduced reward effects.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Transtornos Relacionados ao Uso de Substâncias , Animais , Ratos , Cocaína/farmacologia , Dopamina , Corpo Estriado
2.
Front Behav Neurosci ; 17: 1200392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333480

RESUMO

Introduction: Motor impulsivity and risk-related impulsive choice have been proposed as vulnerability factors for drug abuse, due to their high prevalence in drug abusers. However, how these two facets of impulsivity are associated to drug abuse remains unclear. Here, we investigated the predictive value of both motor impulsivity and risk-related impulsive choice on characteristics of drug abuse including initiation and maintenance of drug use, motivation for the drug, extinction of drug-seeking behavior following drug discontinuation and, finally, propensity to relapse. Methods: We used the Roman High- (RHA) and Low- Avoidance (RLA) rat lines, which display innate phenotypical differences in motor impulsivity, risk-related impulsive choice, and propensity to self-administer drugs. Individual levels of motor impulsivity and risk-related impulsive choice were measured using the rat Gambling task. Then, rats were allowed to self-administer cocaine (0.3 mg/kg/infusion; 14 days) to evaluate acquisition and maintenance of cocaine self-administration, after which motivation for cocaine was assessed using a progressive ratio schedule of reinforcement. Subsequently, rats were tested for their resistance to extinction, followed by cue-induced and drug-primed reinstatement sessions to evaluate relapse. Finally, we evaluated the effect of the dopamine stabilizer aripiprazole on reinstatement of drug-seeking behaviors. Results: We found that motor impulsivity and risk-related impulsive choice were positively correlated at baseline. Furthermore, innate high levels of motor impulsivity were associated with higher drug use and increased vulnerability to cocaine-primed reinstatement of drug-seeking. However, no relationships were observed between motor impulsivity and the motivation for the drug, extinction or cue-induced reinstatement of drug-seeking. High levels of risk-related impulsive choice were not associated to any aspects of drug abuse measured in our study. Additionally, aripiprazole similarly blocked cocaine-primed reinstatement of drug-seeking in both high- and low-impulsive animals, suggesting that aripiprazole acts as a D2/3R antagonist to prevent relapse independently of the levels of impulsivity and propensity to self-administer drugs. Discussion: Altogether, our study highlights motor impulsivity as an important predictive factor for drug abuse and drug-primed relapse. On the other hand, the involvement of risk-related impulsive choice as a risk factor for drug abuse appears to be limited.

3.
Mol Psychiatry ; 28(1): 463-474, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36376463

RESUMO

The neurobiological mechanisms underlying compulsive alcohol use, a cardinal feature of alcohol use disorder, remain elusive. The key modulator of motivational processes, dopamine (DA), is suspected to play an important role in this pathology, but its exact role remains to be determined. Here, we found that rats expressing compulsive-like alcohol use, operationalized as punishment-resistant self-administration, showed a decrease in DA levels restricted to the dorsolateral territories of the striatum, the main output structure of the nigrostriatal DA pathway. We then causally demonstrated that chemogenetic-induced selective hypodopaminergia of this pathway resulted in compulsive-like alcohol self-administration in otherwise resilient rats, accompanied by the emergence of alcohol withdrawal-like motivational impairments (i.e., impaired motivation for a natural reinforcer). Finally, the use of the monoamine stabilizer OSU6162, previously reported to correct hypodopaminergic states, transiently decreased compulsive-like alcohol self-administration in vulnerable rats. These results suggest a potential critical role of tonic nigrostriatal hypodopaminergic states in alcohol addiction and provide new insights into our understanding of the neurobiological mechanisms underlying compulsive alcohol use.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Ratos , Animais , Alcoolismo/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Etanol/farmacologia , Dopamina/metabolismo , Comportamento Compulsivo
4.
Mol Neurobiol ; 59(10): 6170-6182, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35895232

RESUMO

A growing body of evidence supports the idea that mitochondrial dysfunction might represent a key feature of Parkinson's disease (PD). Central regulators of energy production, mitochondria, are also involved in several other essential functions such as cell death pathways and neuroinflammation which make them a potential therapeutic target for PD management. Interestingly, recent studies related to PD have reported a neuroprotective effect of targeting mitochondrial pyruvate carrier (MPC) by the insulin sensitizer MSDC-0160. As the sole point of entry of pyruvate into the mitochondrial matrix, MPC plays a crucial role in energetic metabolism which is impacted in PD. This study therefore aimed at providing insights into the mechanisms underlying the neuroprotective effect of MSDC-0160. We investigated behavioral, cellular, and metabolic impact of chronic MSDC-0160 treatment in unilateral 6-OHDA PD rats. We evaluated mitochondrially related processes through the expression of pivotal mitochondrial enzymes in dorsal striatal biopsies and the level of metabolites in serum samples using nuclear magnetic resonance spectroscopy (NMR)-based metabolomics. MSDC-0160 treatment in unilateral 6-OHDA rats improved motor behavior, decreased dopaminergic denervation, and reduced mTOR activity and neuroinflammation. Concomitantly, MSDC-0160 administration strongly modified energy metabolism as revealed by increased ketogenesis, beta oxidation, and glutamate oxidation to satisfy energy needs and maintain energy homeostasis. MSDC-0160 exerts its neuroprotective effect through reorganization of multiple pathways connected to energy metabolism.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Piridinas , Ratos , Tiazolidinedionas
5.
PLoS One ; 15(9): e0238156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946510

RESUMO

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) represent a technical revolution in integrative neuroscience. However, the first used ligands exhibited dose-dependent selectivity for their molecular target, leading to potential unspecific effects. Compound 21 (C21) was recently proposed as an alternative, but in vivo characterization of its properties is not sufficient yet. Here, we evaluated its potency to selectively modulate the activity of nigral dopaminergic (DA) neurons through the canonical DREADD receptor hM4Di using TH-Cre rats. In males, 1 mg.kg-1 of C21 strongly increased nigral neurons activity in control animals, indicative of a significant off-target effect. Reducing the dose to 0.5 mg.kg-1 circumvented this unspecific effect, while activated the inhibitory DREADDs and selectively reduced nigral neurons firing. In females, 0.5 mg.kg-1 of C21 induced a transient and residual off-target effect that may mitigated the inhibitory DREADDs-mediated effect. This study raises up the necessity to test selectivity and efficacy of chosen ligands for each new experimental condition.


Assuntos
Drogas Desenhadas/farmacologia , Terapia de Alvo Molecular , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...