Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(8): 12541-12552, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35867997

RESUMO

A high-throughput analysis based on density functional simulations underscores the viable epitaxial growth of MXenes by alternating nitrogen and metal adlayers. This is supported by an exhaustive analysis of a number of thermodynamic and kinetic thresholds belonging to different critical key steps in the course of the epitaxial growth. The results on 18 pristine N- and C-based MXenes with M2X stoichiometry reveal an easy initial N2 fixation and dissociation, where N2 adsorption is controlled by the MXene surface charge and metal d-band center and its dissociation controlled by the reaction energy change. Furthermore, formation energies indicate the plausible formation of N-terminated M2XN2 MXenes. Moreover, the further covering with metal adlayers is found to be thermodynamically driven and stable, especially when using early transition metal atoms. The most restrictive analyzed criterion is the N2 adsorption and dissociation at nearly full N-covered adlayers, which is yet achievable for almost half of the explored M2X seeds. The present results unfold the possibility of expanding, controlling, and tuning the composition, width, and structure of the MXene family.

2.
ACS Appl Bio Mater ; 3(9): 5913-5921, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021819

RESUMO

Due to their vast range of promising biomedical and electronic applications, there is a growing interest in bioinorganic lamellar nanomaterials. MXenes are one such class of materials, which stand out by virtue of their demonstrated biocompatibility, pharmacological applicability, energy storage performance, and feasibility as single-molecule sensors. Here, we report on first-principles predictions, based on density functional theory, of the binding energies and ground-state configurations of six selected amino acids (AAs) adsorbed on O-terminated two-dimensional titanium carbide, Ti2CO2. We find that most AAs (aspartic acid, cysteine, glycine, and phenylalanine) prefer to adsorb via their nitrogen atom, which forms a weak bond with a surface Ti atom, with bond lengths of around 2.35 Å. In contrast, histidine and serine tend to adsorb parallel to the MXene surface, with their α carbon about 3 Å away from it. In both adsorption configurations, the adsorption energies are on the order of the tenths of an electronvolt. In addition, we find a positive, nearly linear correlation between the binding energy of each studied AA and its van der Waals volume, which suggests an adsorption dominated by van der Waals forces. This relationship allowed us to predict the adsorption energies for all of the proteinogenic AAs on the same Ti2CO2 MXene. Our analysis additionally shows that in the parallel adsorption mode there is a negligible transfer of charge density from the AA to the surface but noticeable in the N-bonded adsorption mode. In the latter, the isosurfaces of charge density differences show accumulation of shared electrons in the region between N and Ti, confirming the predicted N-Ti bond. The moderate adsorption energy values calculated, as well as the preservation of the integrity of both the AAs and the surface upon adsorption, reinforce the capability of Ti2CO2 as a promising reusable biosensor for amino acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...