Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 43(7): 669-683, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32480495

RESUMO

A type II peroxiredoxin gene (XvPrx2) was isolated from a Xerophyta viscosa (Baker) cDNA cold-stress library. The polypeptide displayed significant similarity to other plant type II peroxiredoxins, with the conserved amino acid motif (PGAFTPTCS) proposed to constitute the active site of the enzyme. Northern blot analyses showed that XvPrx2 gene was stress-inducible in response to abiotic stresses while gel analyses revealed that XvPrx2 homologues exist within the X. viscosa proteome. Using a yellow fluorescent reporter protein, the XvPrx2 protein localised to the cytosol. A mutated protein (XvV7) was generated by converting the valine at position 76 to a cysteine and an in vitro DNA protection assay showed that, in the presence of either XvPrx2 or XvV7, DNA protection occurred. In addition, an in vivo assay showed that increased protection was conferred to Escherichia coli cells overexpressing either XvPrx2 or XvV7. The XvPrx2 activity was maximal with DTT as electron donor and H2O2 as substrate. Using E. coli thioredoxin, a 2-15-fold lower enzyme activity was observed. The XvPrx2 activity with glutathione was significantly lower and glutaredoxin had no measurable effect on this reaction. The XvV7 protein displayed significantly lower activity compared with XvPrx2 for all substrates assessed.

2.
J Biol Chem ; 286(25): 22580-8, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21504901

RESUMO

Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate K(m) of 7.5 µm and V(max) of 1800 nmol min(-1) mg(-1) of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg(2+) or Mn(2+). Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico , GMP Cíclico/biossíntese , Regulação da Expressão Gênica de Plantas , Cinética , Dados de Sequência Molecular , Fosfotransferases/metabolismo , Protoplastos/enzimologia , Protoplastos/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...