Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Genet ; 15: 1372042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812969

RESUMO

Background: Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. Methods: Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. Results: Two genome-wide significant (P < 5 × 10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. Conclusion: This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes.

2.
Clin Proteomics ; 21(1): 15, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402394

RESUMO

BACKGROUND: Hypertension is an important public health priority with a high prevalence in Africa. It is also an independent risk factor for kidney outcomes. We aimed to identify potential proteins and pathways involved in hypertension-associated albuminuria by assessing urinary proteomic profiles in black South African participants with combined hypertension and albuminuria compared to those who have neither condition. METHODS: The study included 24 South African cases with both hypertension and albuminuria and 49 control participants who had neither condition. Protein was extracted from urine samples and analysed using ultra-high-performance liquid chromatography coupled with mass spectrometry. Data were generated using data-independent acquisition (DIA) and processed using Spectronaut™ 15. Statistical and functional data annotation were performed on Perseus and Cytoscape to identify and annotate differentially abundant proteins. Machine learning was applied to the dataset using the OmicLearn platform. RESULTS: Overall, a mean of 1,225 and 915 proteins were quantified in the control and case groups, respectively. Three hundred and thirty-two differentially abundant proteins were constructed into a network. Pathways associated with these differentially abundant proteins included the immune system (q-value [false discovery rate] = 1.4 × 10- 45), innate immune system (q = 1.1 × 10- 32), extracellular matrix (ECM) organisation (q = 0.03) and activation of matrix metalloproteinases (q = 0.04). Proteins with high disease scores (76-100% confidence) for both hypertension and chronic kidney disease included angiotensinogen (AGT), albumin (ALB), apolipoprotein L1 (APOL1), and uromodulin (UMOD). A machine learning approach was able to identify a set of 20 proteins, differentiating between cases and controls. CONCLUSIONS: The urinary proteomic data combined with the machine learning approach was able to classify disease status and identify proteins and pathways associated with hypertension-associated albuminuria.

3.
medRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38293229

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. METHODS: Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS: Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION: This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes. METHODS: Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS: Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION: This study contributes novel insights into the genetic architecture of kidney function in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations.

4.
Clin J Am Soc Nephrol ; 17(6): 798-808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35577564

RESUMO

BACKGROUND AND OBJECTIVES: Recessive inheritance of African-specific APOL1 kidney risk variants is associated with higher risk of nondiabetic kidney disease, progression to kidney failure, and early-onset albuminuria that precedes eGFR decline. The effect of APOL1 risk variants on kidney disease in continental Africans is understudied. Objectives of this study were to determine APOL1 risk allele prevalence and associations between APOL1 genotypes and kidney disease in West, East, and South Africa. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This cross-sectional population-based study in four African countries included 10,769 participants largely aged 40-60 years with sociodemographic and health information, anthropometry data, and blood and urine tests for biomarkers of kidney disease. APOL1 risk alleles were imputed from the H3Africa genotyping array, APOL1 risk allele and genotype frequencies were determined, and genetic associations were assessed for kidney disease. Kidney disease was defined as the presence of eGFR <60 ml/min per 1.73 m2, albuminuria, or a composite end point including eGFR <60 ml/min per 1.73 m2 and/or albuminuria. RESULTS: High G1 allele frequencies occurred in South and West Africa (approximately 7%-13%). G2 allele frequencies were highest in South Africa (15%-24%), followed by West Africa (9%-12%). Associations between APOL1 risk variants and albuminuria were significant for recessive (odds ratio, 1.63; 95% confidence interval, 1.25 to 2.12) and additive (odds ratio, 1.39; 95% confidence interval, 1.09 to 1.76) models. Associations were stronger for APOL1 G1/G1 genotypes versus G0/G0 (odds ratio, 3.87; 95% confidence interval, 2.16 to 6.93) compared with either G2/G2 (odds ratio, 1.65; 95% confidence interval, 1.09 to 2.51) or G1/G2 (odds ratio, 1.24; 95% confidence interval, 0.83 to 1.87). No association between APOL1 risk variants and eGFR <60 ml/min per 1.73 m2 was observed. CONCLUSIONS: APOL1 G1 and G2 alleles and high-risk genotype frequencies differed between and within West and South Africa and were almost absent from East Africa. APOL1 risk variants were associated with albuminuria but not eGFR <60 ml/min per 1.73 m2. There may be differential effects of homozygous G1 and G2 genotypes on albuminuria that require further investigation. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_05_16_CJN14321121.mp3.


Assuntos
Albuminúria , Apolipoproteína L1 , África Subsaariana , Albuminúria/genética , Apolipoproteína L1/genética , Apolipoproteínas/genética , Estudos Transversais , Predisposição Genética para Doença , Genótipo , Humanos , Fatores de Risco
5.
Artigo em Inglês | MEDLINE | ID: mdl-35457483

RESUMO

Understanding social media networks and group interactions is crucial to the advancement of linguistic and cultural behavior. This includes how people accessed advice on health during COVID-19 lockdown. Some people turned to social media to access information on health when other routes were curtailed by isolation rules, particularly among older generations. Facebook public pages, groups and verified profiles using keywords "senior citizen health", "older generations", and "healthy living" were analyzed over a 12-month period to examine engagement with social media promoting good mental health. CrowdTangle was used to source status updates, photo and video sharing information in the English language, which resulted in an initial 116,321 posts and 6,462,065 interactions. Data analysis and visualization were used to explore large datasets, including natural language processing for "message" content discovery, word frequency and correlational analysis as well as co-word clustering. Preliminary results indicate strong links to healthy aging information shared on social media, which showed correlations to global daily confirmed cases and daily deaths. The results can identify public concerns early on and address mental health issues among senior citizens on Facebook.


Assuntos
COVID-19 , Mídias Sociais , Telemedicina , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Análise de Dados , Humanos
6.
Front Genet ; 12: 682929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819944

RESUMO

Globally, chronic kidney disease (CKD) contributes substantial morbidity and mortality. Recently, various 'omics platforms have provided insight into the molecular basis of kidney dysfunction. This scoping review is a synthesis of the current literature on the use of different 'omics platforms to identify biomarkers that could be used to detect early-stage CKD, predict disease progression, and identify pathways leading to CKD. This review includes 123 articles published from January 2007 to May 2021, following a structured selection process. The most common type of 'omic platform was proteomics, appearing in 55 of the studies and two of these included a metabolomics component. Most studies (n = 91) reported on CKD associated with diabetes mellitus. Thirteen studies that provided information on the biomarkers associated with CKD and explored potential pathways involved in CKD are discussed. The biomarkers that are associated with risk or early detection of CKD are SNPs in the MYH9/APOL1 and UMOD genes, the proteomic CKD273 biomarker panel and metabolite pantothenic acid. Pantothenic acid and the CKD273 biomarker panel were also involved in predicting CKD progression. Retinoic acid pathway genes, UMOD, and pantothenic acid provided insight into potential pathways leading to CKD. The biomarkers were mainly used to detect CKD and predict progression in high-income, European ancestry populations, highlighting the need for representative 'omics research in other populations with disparate socio-economic strata, including Africans, since disease etiologies may differ across ethnic groups. To assess the transferability of findings, it is essential to do research in diverse populations.

8.
Am J Trop Med Hyg ; 102(6): 1417-1424, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207403

RESUMO

The 11th Congress of the African Society of Human Genetics (AfSHG) was held from September 16, 2018 to September 21, 2018, in conjunction with the 12th Human Heredity and Health in Africa (H3Africa) Consortium meeting in Kigali, Rwanda. The event was organized by the AfSHG in partnership with the Rwanda Society of Human Genetics and the University of Rwanda. A 2-day workshop on the application of next-generation sequencing technologies for analyzing monogenic disease in African populations was organized as part of the conference (September 22, 2018-September 23, 2018, Kigali, Rwanda). The theme of the conference was "Building skills and resources for genomics, epigenetics and bioinformatics research for Africa." The conference served as a platform to bring together members from country-specific Societies of Human Genetics, including Rwanda, Cameroon, Democratic Republic of Congo, Egypt, Mali, Senegal, and South Africa, and included 435 delegates from 38 countries, including 29 African countries that attended the conference. A major topic of discussion was how to bridge the gap between the emerging knowledge on genomics and Omics in African populations. The importance of understanding the role of genetic variation in disease causation and susceptibility among Africans was a constant theme during the meeting, as was the need to develop research infrastructure and resources to enhance healthcare systems, so that they are not left behind in the genomic revolution. It was concluded that there is a need to inspire more African scientists to train and work as investigators, clinicians, and genetic counselors in the field of human genetics in Africa. Local investments, and South-South and South-North collaboration were identified as the key drivers for the successful implementation of research and development on the continent.


Assuntos
Biologia Computacional , Epigênese Genética , Genômica , África , Genética Humana , Humanos
9.
Commun Biol ; 2: 416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754646

RESUMO

In black African children with focal segmental glomerulosclerosis (FSGS) there are high rates of steroid resistance. The aim was to determine genetic associations with apolipoprotein L1 (APOL1) renal risk variants and podocin (NPHS2) variants in 30 unrelated black South African children with FSGS. Three APOL1 variants were genotyped and the exons of the NPHS2 gene sequenced in the cases and controls. APOL1 risk alleles show a modest association with steroid sensitive nephrotic syndrome (SSNS) and steroid resistant nephrotic syndrome (SRNS). The NPHS2 V260E variant was present in SRNS cases (V/V = 5; V/E = 4; E/E = 11), and was absent in SSNS cases. Haplotype analysis suggests a single mutation origin for V260E and it was associated with a decline in kidney function over a 60-month period (p = 0.026). The V260E variant is a good predictor of autosomal recessive SRNS in black South African children and could provide useful information in a clinical setting.


Assuntos
Alelos , Substituição de Aminoácidos , População Negra/genética , Glomerulosclerose Segmentar e Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Síndrome Nefrótica/genética , Apolipoproteína L1/genética , Criança , Pré-Escolar , Resistência a Medicamentos/genética , Feminino , Genótipo , Glomerulosclerose Segmentar e Focal/diagnóstico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Haplótipos , Humanos , Masculino , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Linhagem , Esteroides/farmacologia , Esteroides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...