Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 55(3): 366-372, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27447116

RESUMO

INTRODUCTION: No treatments for axonal peripheral neuropathy are approved by the United States Food and Drug Administration (FDA). Although patient- and clinician-reported outcomes are central to evaluating neuropathy symptoms, they can be difficult to assess accurately. The inability to identify efficacious treatments for peripheral neuropathies could be due to invalid or inadequate outcome measures. METHODS: This systematic review examined the content validity of symptom-based measures of diabetic peripheral neuropathy, HIV neuropathy, and chemotherapy-induced peripheral neuropathy. RESULTS: Use of all FDA-recommended methods to establish content validity was only reported for 2 of 18 measures. Multiple sensory and motor symptoms were included in measures for all 3 conditions; these included numbness, tingling, pain, allodynia, difficulty walking, and cramping. Autonomic symptoms were less frequently included. CONCLUSIONS: Given significant overlap in symptoms between neuropathy etiologies, a measure with content validity for multiple neuropathies with supplemental disease-specific modules could be of great value in the development of disease-modifying treatments for peripheral neuropathies. Muscle Nerve 55: 366-372, 2017.


Assuntos
Neuropatias Diabéticas , Infecções por HIV/complicações , Doenças do Sistema Nervoso Periférico , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/etiologia , Humanos , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia
2.
Pain ; 157(9): 1836-1850, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27058676

RESUMO

Although pain reduction is commonly the primary outcome in chronic pain clinical trials, physical functioning is also important. A challenge in designing chronic pain trials to determine efficacy and effectiveness of therapies is obtaining appropriate information about the impact of an intervention on physical function. The Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) and Outcome Measures in Rheumatology (OMERACT) convened a meeting to consider assessment of physical functioning and participation in research on chronic pain. The primary purpose of this article is to synthesize evidence on the scope of physical functioning to inform work on refining physical function outcome measurement. We address issues in assessing this broad construct and provide examples of frequently used measures of relevant concepts. Investigators can assess physical functioning using patient-reported outcome (PRO), performance-based, and objective measures of activity. This article aims to provide support for the use of these measures, covering broad aspects of functioning, including work participation, social participation, and caregiver burden, which researchers should consider when designing chronic pain clinical trials. Investigators should consider the inclusion of both PROs and performance-based measures as they provide different but also important complementary information. The development and use of reliable and valid PROs and performance-based measures of physical functioning may expedite development of treatments, and standardization of these measures has the potential to facilitate comparison across studies. We provide recommendations regarding important domains to stimulate research to develop tools that are more robust, address consistency and standardization, and engage patients early in tool development.


Assuntos
Dor Crônica , Ensaios Clínicos como Assunto/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/normas , Manejo da Dor/métodos , Resultado do Tratamento , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Dor Crônica/terapia , Humanos , Manejo da Dor/normas , Medição da Dor/métodos , Qualidade de Vida/psicologia , Participação Social/psicologia
3.
Pain ; 157(4): 901-909, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26683237

RESUMO

There is growing concern about lack of scientific rigor and transparent reporting across many preclinical fields of biological research. Poor experimental design and lack of transparent reporting can result in conscious or unconscious experimental bias, producing results that are not replicable. The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the U.S. Food and Drug Administration sponsored a consensus meeting of the Preclinical Pain Research Consortium for Investigating Safety and Efficacy (PPRECISE) Working Group. International participants from universities, funding agencies, government agencies, industry, and a patient advocacy organization attended. Reduction of publication bias, increasing the ability of others to faithfully repeat experimental methods, and increased transparency of data reporting were specifically discussed. Parameters deemed essential to increase confidence in the published literature were clear, specific reporting of an a priori hypothesis and definition of primary outcome measure. Power calculations and whether measurement of minimal meaningful effect size to determine these should be a core component of the preclinical research effort provoked considerable discussion, with many but not all agreeing. Greater transparency of reporting should be driven by scientists, journal editors, reviewers, and grant funders. The conduct of high-quality science that is fully reported should not preclude novelty and innovation in preclinical pain research, and indeed, any efforts that curtail such innovation would be misguided. We believe that to achieve the goal of finding effective new treatments for patients with pain, the pain field needs to deal with these challenging issues.


Assuntos
Analgésicos/uso terapêutico , Dor , Viés , Medicina Baseada em Evidências/métodos , Humanos , Dor/tratamento farmacológico , Projetos de Pesquisa
4.
Neurobiol Learn Mem ; 92(2): 155-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19345275

RESUMO

This review focuses on synaptic depression at sensory neuron-to-motor neuron synapses in the defensive withdrawal circuit of Aplysia as a model system for analysis of molecular mechanisms of sensory gating and habituation. We address the following topics: 1. Of various possible mechanisms that might underlie depression at these sensory neuron-to-motor neuron synapses in Aplysia, historically the most widely-accepted explanation has been depletion of the readily releasable pool of vesicles. Depletion is also believed to account for synaptic depression at long interstimulus intervals in a variety of other systems. 2. Multiple lines of evidence now indicate that vesicle depletion is not an important contributing mechanism to synaptic depression at Aplysia sensory neuron-to-motor neuron synapses. More generally, it appears that vesicle depletion does not contribute substantially to depression that occurs with those stimulus patterns that are typically used in studying behavioral habituation. 3. Recent evidence suggests that at these sensory neuron-to-motor neuron synapses in Aplysia, synaptic depression is mediated by an activity-dependent, but release-independent, switching of individual release sites to a silent state. This switching off of release sites is initiated by Ca2+ influx during individual action potentials. We discuss signaling proteins that may be regulated by Ca2+ during the silencing of release sites that underlies synaptic depression. 4. Bursts of 2-4 action potentials in presynaptic sensory neurons in Aplysia prevent the switching off of release sites via a mechanism called "burst-dependent protection" from synaptic depression. 5. This molecular switch may explain the sensory gating that allows animals to discriminate which stimuli are innocuous and appropriate to ignore and which stimuli are more important and should continue to elicit responses.


Assuntos
Habituação Psicofisiológica/fisiologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Aplysia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Modelos Animais , Modelos Neurológicos , Reflexo/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia
5.
Mol Cell Biochem ; 327(1-2): 15-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19199006

RESUMO

Caffeine-induced Ca2+ transients (CICTs) in rabbit nodose ganglion neurons (NGNs) are produced by two distinct mechanisms: release from intracellular stores via ryanodine receptors and Ca2+ influx across the plasma membrane, due to activation of an unknown receptor. In isolated rat NGNs, we used single-cell microfluorimetry to measure changes in intracellular Ca2+ and to test whether TRPV1 receptors underlie the Ca2+ influx pathway. Caffeine (10 mM) evoked CICTs in all NGNs tested (n = 47) averaging 365 +/- 32 nM. CICTs were partially dependent upon a Ca2+ influx pathway that ranged between 33% and 98% of the total Ca2+ transient. Application of two selective TRPV1 antagonists significantly attenuated CICTs. The peak average amplitudes of CICTs in Ca2+-free Locke solution and Ca2+-free Locke solution with IRTX or with BCTC were not significantly different from one another (n = 5 and 7, respectively). These observations suggest that caffeine can induce Ca2+ influx by activating TRPV1 channels.


Assuntos
Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
6.
Mol Cancer Ther ; 7(9): 2828-36, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18790763

RESUMO

Inhibitors of the enzyme 17alpha-hydroxylase/17,20 lyase are a new class of anti-prostate cancer agents currently undergoing preclinical and clinical development. We have previously reported the superior anticancer activity of our novel 17alpha-hydroxylase/17,20 lyase inhibitor, VN/124-1, against androgen-dependent cancer models. Here, we examined the effect of VN/124-1 on the growth of the androgen-independent cell lines PC-3 and DU-145 and found that the compound inhibits their growth in a dose-dependent manner in vitro (GI50, 7.82 micromol/L and 7.55 micromol/L, respectively). We explored the mechanism of action of VN/124-1 in PC-3 cells through microarray analysis and found that VN/124-1 up-regulated genes involved in stress response and protein metabolism, as well as down-regulated genes involved in cell cycle progression. Follow-up real-time PCR and Western blot analyses revealed that VN/124-1 induces the endoplasmic reticulum stress response resulting in down-regulation of cyclin D1 protein expression and cyclin E2 mRNA. Cell cycle analysis confirmed G1-G0 phase arrest. Measurements of intracellular calcium levels ([Ca2+]i) showed that 20 micromol/L VN/124-1 caused a release of Ca2+ from endoplasmic reticulum stores resulting in a sustained increase in [Ca2+]i. Finally, cotreatment of PC-3 cells with 5, 10, and 20 micromol/L VN/124-1 with 10 nmol/L thapsigargin revealed a synergistic relationship between the compounds in inhibiting PC-3 cell growth. Taken together, these findings show VN/124-1 is endowed with multiple anticancer properties that may contribute to its utility as a prostate cancer therapeutic.


Assuntos
Androstadienos/farmacologia , Benzimidazóis/farmacologia , Retículo Endoplasmático/patologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Androgênios/metabolismo , Androstadienos/química , Animais , Benzimidazóis/química , Cálcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Neoplásicos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Tapsigargina/farmacologia , Regulação para Cima/efeitos dos fármacos
7.
J Physiol ; 578(Pt 2): 481-90, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17095566

RESUMO

Ca2+ is vital for release of neurotransmitters and trophic factors from peripheral sensory nerve terminals (PSNTs), yet Ca2+ regulation in PSNTs remains unexplored. To elucidate the Ca2+ regulatory mechanisms in PSNTs, we determined the effects of a panel of pharmacological agents on electrically evoked Ca2+ transients in rat corneal nerve terminals (CNTs) in vitro that had been loaded with the fluorescent Ca2+ indicator, Oregon Green 488 BAPTA-1 dextran or fura-2 dextran in vivo. Inhibition of the sarco(endo)plasmic reticulum Ca2+-ATPase, disruption of mitochondrial Ca2+ uptake, or inhibition of the Na+-Ca2+ exchanger did not measurably alter the amplitude or decay kinetics of the electrically evoked Ca2+ transients in CNTs. By contrast, inhibition of the plasma membrane Ca2+-ATPase (PMCA) by increasing the pH slowed the decay of the Ca2+ transient by 2-fold. Surprisingly, the energy for ion transport across the plasma membrane of CNTs is predominantly from glycolysis rather than mitochondrial respiration, as evidenced by the observation that Ca2+ transients were suppressed by iodoacetate but unaffected by mitochondrial inhibitors. These observations indicate that, following electrical activity, the PMCA is the predominant mechanism of Ca2+ clearance from the cytosol of CNTs and glycolysis is the predominant source of energy.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Córnea/inervação , Estimulação Elétrica , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Concentração de Íons de Hidrogênio , Indóis/farmacologia , Iodoacetatos/farmacologia , Ionóforos/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ouabaína/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Células Receptoras Sensoriais/efeitos dos fármacos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Temperatura , Tioureia/análogos & derivados , Tioureia/farmacologia
8.
Cell Calcium ; 41(4): 389-96, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17046058

RESUMO

In primary sensory afferent neurons, Ca2+ plays a vital role in the regulation of cellular processes including receptor and synaptic plasticity, neurotransmitter and trophic factor release and gene regulation. Current understanding of the mechanisms underlying Ca2+ homeostasis of primary sensory afferent neurons is mostly derived from studies on dorsal root ganglia and nodose ganglia neuron cell bodies. Little is known about Ca2+ homeostasis in trigeminal ganglion neurons (TGNs). To determine what cellular processes contribute to electrically-evoked Ca2+ transients in TGNs, we probed Ca2+ regulatory mechanisms in TGN cell bodies from the ophthalmic division with a panel of pharmacological reagents. Ca2+ transients were evoked in fura-2 loaded TGNs by depolarizing the plasma membrane with brief (500 ms) puffs of 50 mM KCl. Cyclopiazonic acid (CPA; 5 microM), an inhibitor of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), significantly decreased the peak amplitude, and slowed the decay, of the KCl-evoked Ca2+ transients in TGNs. The mitochondrial protonophore, carbonyl cyanide 3-chloro-phenylhydrazone (CCCP; 5 microM) significantly increased the peak amplitude of KCl-evoked Ca2+ transients. These data demonstrate that Ca2+ stores do play a major role in Ca2+ homeostasis in TGN cell bodies. To determine the role of the sodium-calcium exchanger (NCX) in KCl-evoked Ca2+ transients in TGNs, we inhibited the exchanger with KB-R7943 (10 microM), or by replacing Na+ with Li+. NCX inhibition did not affect either the peak amplitude or the decay kinetics of the KCl-evoked Ca2+ transients. Therefore, the NCX does not play a significant role in removing cytosolic Ca2+ from TGNs. To test whether the plasma membrane calcium-ATPase (PMCA) contributes to Ca2+ extrusion, we inhibited its activity by a shift to alkaline pH (9.0). At pH 9.0, both the peak amplitude and decay time of the KCl-evoked Ca2+ transient were increased significantly. These data suggest that, in TGNs, the PMCA is the major mechanism for removing cytosolic Ca2+ following electrical activity.


Assuntos
Cálcio/metabolismo , Homeostase , Neurônios/fisiologia , Gânglio Trigeminal/fisiologia , Animais , Cálcio/antagonistas & inibidores , Canais de Cálcio/metabolismo , Retículo Endoplasmático/fisiologia , Masculino , Mitocôndrias/fisiologia , Técnicas de Patch-Clamp , ATPases Transportadoras de Cálcio da Membrana Plasmática/fisiologia , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/fisiologia , Gânglio Trigeminal/citologia
9.
Biochemistry ; 45(15): 4915-26, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16605259

RESUMO

Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in approximately 40 micros and approximately 125 micros, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca(2+) indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca(2+)-free extracellular medium, photoreleased vanilloid can still elevate [Ca(2+)](i), which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca(2+) release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in <4 ms at 22 degrees C. In combination with 1- or 2-photon excitation, caged vanilloids are a powerful tool for probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision.


Assuntos
Ligantes , Fótons , Canais de Cátion TRPV/metabolismo , Ácido Vanílico/análogos & derivados , Animais , Masculino , Microscopia Confocal , Neurônios/metabolismo , Fotólise , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/efeitos da radiação , Ácido Vanílico/química , Ácido Vanílico/metabolismo
10.
J Neurosci ; 23(12): 4793-7, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12832498

RESUMO

Peripheral sensory nerve terminals (PSNTs) have a dual function: reporting normal and abnormal sensations and releasing trophic factors to maintain the structure and function of epithelial cells. Although it is widely considered that intracellular Ca2+ plays a critical signaling role for both functions, the role of Ca2+ signaling has never been studied in PSNTs, primarily because of their small size and anatomical inaccessibility. Here, using epifluoresence microscopy and a fluorescent Ca2+ indicator, we report that action potentials or chemical irritation can elicit transient rises in [Ca2+]i (Ca2+ transients) in PSNTs within the corneal epithelium of the rat. In vitro electrical stimulation of the ciliary nerves in the eye, or electrical field stimulation of the cornea, evoked Ca2+ transients with a magnitude that was proportional to the number of stimuli applied over the range of 1-10 stimuli. Ca2+ transients were significantly blocked by 1 mm lidocaine, 4.1 microm saxitoxin (STX), or L-type Ca2+ channel antagonists (1 mm diltiazem or 20 microm nifedipine). The nociceptive agonist capsaicin (1 microm) elicited Ca2+ transients in all nerve terminals studied. Capsaicin-evoked Ca2+ transients were completely blocked by the vanilloid receptor 1 antagonist capsazepine (100 microm). In contrast, capsaicin-evoked Ca2+ transients were not attenuated by preincubation with 4.1 microm STX or 20 microm nifedipine. These findings demonstrate, for the first time, that nerve impulses or chemical stimulation promote Ca2+ entry into PSNTs, including nociceptors.


Assuntos
Sinalização do Cálcio/fisiologia , Capsaicina/análogos & derivados , Nervos Periféricos/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anestésicos Locais/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Córnea/inervação , Estimulação Elétrica , Corantes Fluorescentes , Técnicas In Vitro , Microscopia Confocal , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Estimulação Química
11.
J Neurosci ; 22(5): 1942-55, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11880525

RESUMO

The synaptic connections of Aplysia sensory neurons (SNs) undergo dramatic homosynaptic depression (HSD) with only a few low-frequency stimuli. Strong and weak SN synapses, although differing in their probabilities of release, undergo HSD at the same rate; this suggests that the major mechanism underlying HSD in these SNs may not be depletion of the releasable pool of vesicles. In computational models, we evaluated alternative mechanisms of HSD, including vesicle depletion, to determine which mechanisms enable strong and weak synapses to depress with identical time courses. Of five mechanisms tested, only release-independent, stimulus-dependent switching off of release sites resulted in HSD that was independent of initial synaptic strength. This conclusion that HSD is a release-independent phenomenon was supported by empirical results: an increase in Ca2+ influx caused by spike broadening with a K+ channel blocker did not alter HSD. Once induced, HSD persisted during 40 min of rest with no detectable recovery; thus, release does not recover automatically with rest, contrary to what would be expected if HSD represented an exhaustion of the exocytosis mechanism. The hypothesis that short-term HSD involves primarily a stepwise silencing of release sites, rather than vesicle depletion, is consistent with our earlier observation that HSD is accompanied by only a modest decrease in release probability, as indicated by little change in the paired-pulse ratio. In contrast, we found that there was a dramatic decrease in the paired-pulse ratio during serotonin-induced facilitation; this suggests that heterosynaptic facilitation primarily involves an increase in release probability, rather than a change in the number of functional release sites.


Assuntos
Exocitose/fisiologia , Inibição Neural/fisiologia , Neurônios Aferentes/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Aplysia , Simulação por Computador , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Técnicas In Vitro , Modelos Neurológicos , Método de Monte Carlo , Neurônios Aferentes/efeitos dos fármacos , Probabilidade , Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...