Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vasc Surg Venous Lymphat Disord ; 7(3): 382-386, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30612970

RESUMO

OBJECTIVE: Local anesthetic endovenous procedures were shown to reduce recovery time, to decrease postoperative pain, and to more quickly return the patient to baseline activities. However, a substantial number of patients experience pain during these procedures. The autonomic nervous system modulates pain perception, and its influence on stress response can be noninvasively quantified using heart rate variability (HRV) indices. The aim of our study was to evaluate whether preoperative baseline HRV can predict intraoperative pain during local anesthetic varicose vein surgery. METHODS: Patients scheduled for radiofrequency ablation were included in the study. They had their electrocardiograms recorded from a single channel of a custom-made amplifier. Each patient preoperatively filled in forms Y-1 and Y-2 of Spielberger's State and Trait Anxiety Inventory, completed the Aberdeen Varicose Vein Questionnaire, and rated anxiety level on a numeric scale. Postoperatively, patients filled in the pain they felt during the procedure on the numeric pain intensity scale. MATLAB software (MathWorks, Natick, Mass) was used to extract R waves and to generate HRV signals, and a mathematical model was created to predict the pain score for each patient. RESULTS: In multivariable analysis, we looked into correlation between reported patient's pain score (rPPS) and Aberdeen Varicose Vein Questionnaire score, preoperative forms Y-1 and Y-2, preoperative anxiety level, and predicted patient's pain (pPPS) score. Multivariable analysis found association only between rPPS and pPPS. The pPPS was significantly correlated with rPPS (R = 0.807; P < .001) with accuracy of prediction of 65.2%, which was calculated from R2 on a linear regression model. CONCLUSIONS: This preliminary study shows that preoperative HRV can accurately predict patients' pain, allowing patients with higher predicted score to have the procedure under general anesthesia.


Assuntos
Anestesia Local/efeitos adversos , Eletrocardiografia , Frequência Cardíaca , Dor Pós-Operatória/etiologia , Ablação por Radiofrequência/efeitos adversos , Varizes/cirurgia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Limiar da Dor , Dor Pós-Operatória/diagnóstico , Dor Pós-Operatória/fisiopatologia , Projetos Piloto , Valor Preditivo dos Testes , Cuidados Pré-Operatórios , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Varizes/diagnóstico , Varizes/fisiopatologia
2.
Nat Sci Sleep ; 10: 385-396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538591

RESUMO

OBJECTIVES: Detecting sleep latency during the Multiple Sleep Latency Test (MSLT) using electroencephalogram (scalp-EEG) is time-consuming. The aim of this study was to evaluate the efficacy of a novel in-ear sensor (in-ear EEG) to detect the sleep latency, compared to scalp-EEG, during MSLT in healthy adults, with and without sleep restriction. METHODS: We recruited 25 healthy adults (28.5±5.3 years) who participated in two MSLTs with simultaneous recording of scalp and in-ear EEG. Each test followed a randomly assigned sleep restriction (≤5 hours sleep) or usual night sleep (≥7 hours sleep). Reaction time and Stroop test were used to assess the functional impact of the sleep restriction. The EEGs were scored blind to the mode of measurement and study conditions, using American Academy of Sleep Medicine 2012 criteria. The Agreement between the scalp and in-ear EEG was assessed using Bland-Altman analysis. RESULTS: Technically acceptable data were obtained from 23 adults during 69 out of 92 naps in the sleep restriction condition and 25 adults during 85 out of 100 naps in the usual night sleep. Meaningful sleep restrictions were confirmed by an increase in the reaction time (mean ± SD: 238±30 ms vs 228±27 ms; P=0.045). In the sleep restriction condition, the in-ear EEG exhibited a sensitivity of 0.93 and specificity of 0.80 for detecting sleep latency, with a substantial agreement (κ=0.71), whereas after the usual night's sleep, the in-ear EEG exhibited a sensitivity of 0.91 and specificity of 0.89, again with a substantial agreement (κ=0.79). CONCLUSION: The in-ear sensor was able to detect reduced sleep latency following sleep restriction, which was sufficient to impair both the reaction time and cognitive function. Substantial agreement was observed between the scalp and in-ear EEG when measuring sleep latency. This new in-ear EEG technology is shown to have a significant value as a convenient measure for sleep latency.

3.
Patient Saf Surg ; 12: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713382

RESUMO

BACKGROUND: We aimed to explore the feasibility and attitudes towards using video replay augmented with real time stress quantification for the self-assessment of clinical skills during simulated surgical ward crisis management. METHODS: Twenty two clinicians participated in 3 different simulated ward based scenarios of deteriorating post-operative patients. Continuous ECG recordings were made for all participants to monitor stress levels using heart rate variability (HRV) indices. Video recordings of simulated scenarios augmented with real time stress biofeedback were replayed to participants. They were then asked to self-assess their performance using an objective assessment tool. Participants attitudes were explored using a post study questionnaire. RESULTS: Using HRV stress indices, we demonstrated higher stress levels in novice participants. Self-assessment scores were significantly higher in more experienced participants. Overall, participants felt that video replay and augmented stress biofeedback were useful in self-assessment. CONCLUSION: Self-assessment using an objective self-assessment tool alongside video replay augmented with stress biofeedback is feasible in a simulated setting and well liked by participants.

4.
IEEE J Transl Eng Health Med ; 5: 2800310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29026686

RESUMO

Varicose vein surgeries are routine outpatient procedures, which are often performed under local anaesthesia. The use of local anaesthesia both minimises the risk to patients and is cost effective, however, a number of patients still experience pain during surgery. Surgical teams must therefore decide to administer either a general or local anaesthetic based on their subjective qualitative assessment of patient anxiety and sensitivity to pain, without any means to objectively validate their decision. To this end, we develop a 3-D polynomial surface fit, of physiological metrics and numerical pain ratings from patients, in order to model the link between the modulation of cardiovascular responses and pain in varicose vein surgeries. Spectral and structural complexity features found in heart rate variability signals, recorded immediately prior to 17 varicose vein surgeries, are used as pain metrics. The so obtained pain prediction model is validated through a leave-one-out validation, and achieved a Kappa coefficient of 0.72 (substantial agreement) and an area below a receiver operating characteristic curve of 0.97 (almost perfect accuracy). This proof-of-concept study conclusively demonstrates the feasibility of the accurate classification of pain sensitivity, and introduces a mathematical model to aid clinicians in the objective administration of the safest and most cost-effective anaesthetic to individual patients.

5.
IEEE J Transl Eng Health Med ; 5: 2800108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018638

RESUMO

The monitoring of sleep patterns without patient's inconvenience or involvement of a medical specialist is a clinical question of significant importance. To this end, we propose an automatic sleep stage monitoring system based on an affordable, unobtrusive, discreet, and long-term wearable in-ear sensor for recording the electroencephalogram (ear-EEG). The selected features for sleep pattern classification from a single ear-EEG channel include the spectral edge frequency and multi-scale fuzzy entropy, a structural complexity feature. In this preliminary study, the manually scored hypnograms from simultaneous scalp-EEG and ear-EEG recordings of four subjects are used as labels for two analysis scenarios: 1) classification of ear-EEG hypnogram labels from ear-EEG recordings; and 2) prediction of scalp-EEG hypnogram labels from ear-EEG recordings. We consider both 2-class and 4-class sleep scoring, with the achieved accuracies ranging from 78.5% to 95.2% for ear-EEG labels predicted from ear-EEG, and 76.8% to 91.8% for scalp-EEG labels predicted from ear-EEG. The corresponding Kappa coefficients range from 0.64 to 0.83 for Scenario 1, and indicate substantial to almost perfect agreement, while for Scenario 2 the range of 0.65-0.80 indicates substantial agreement, thus further supporting the feasibility of in-ear sensing for sleep monitoring in the community.

6.
Sci Rep ; 7(1): 6948, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761162

RESUMO

Future health systems require the means to assess and track the neural and physiological function of a user over long periods of time, and in the community. Human body responses are manifested through multiple, interacting modalities - the mechanical, electrical and chemical; yet, current physiological monitors (e.g. actigraphy, heart rate) largely lack in cross-modal ability, are inconvenient and/or stigmatizing. We address these challenges through an inconspicuous earpiece, which benefits from the relatively stable position of the ear canal with respect to vital organs. Equipped with miniature multimodal sensors, it robustly measures the brain, cardiac and respiratory functions. Comprehensive experiments validate each modality within the proposed earpiece, while its potential in wearable health monitoring is illustrated through case studies spanning these three functions. We further demonstrate how combining data from multiple sensors within such an integrated wearable device improves both the accuracy of measurements and the ability to deal with artifacts in real-world scenarios.


Assuntos
Técnicas Biossensoriais/instrumentação , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio/instrumentação , Encéfalo/fisiologia , Orelha , Testes de Função Cardíaca , Humanos , Miniaturização , Testes de Função Respiratória , Dispositivos Eletrônicos Vestíveis
7.
Front Physiol ; 8: 360, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659811

RESUMO

It is generally accepted that the activities of the autonomic nervous system (ANS), which consists of the sympathetic (SNS) and parasympathetic nervous systems (PNS), are reflected in the low- (LF) and high-frequency (HF) bands in heart rate variability (HRV)-while, not without some controversy, the ratio of the powers in those frequency bands, the so called LF-HF ratio (LF/HF), has been used to quantify the degree of sympathovagal balance. Indeed, recent studies demonstrate that, in general: (i) sympathovagal balance cannot be accurately measured via the ratio of the LF- and HF- power bands; and (ii) the correspondence between the LF/HF ratio and the psychological and physiological state of a person is not unique. Since the standard LF/HF ratio provides only a single degree of freedom for the analysis of this 2D phenomenon, we propose a joint treatment of the LF and HF powers in HRV within a two-dimensional representation framework, thus providing the required degrees of freedom. By virtue of the proposed 2D representation, the restrictive assumption of the linear dependence between the activity of the autonomic nervous system (ANS) and the LF-HF frequency band powers is demonstrated to become unnecessary. The proposed analysis framework also opens up completely new possibilities for a more comprehensive and rigorous examination of HRV in relation to physical and mental states of an individual, and makes possible the categorization of different stress states based on HRV. In addition, based on instantaneous amplitudes of Hilbert-transformed LF- and HF-bands, a novel approach to estimate the markers of stress in HRV is proposed and is shown to improve the robustness to artifacts and irregularities, critical issues in real-world recordings. The proposed approach for resolving the ambiguities in the standard LF/HF-ratio analyses is verified over a number of real-world stress-invoking scenarios.

8.
R Soc Open Sci ; 4(12): 170853, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29308229

RESUMO

A highly localized data-association measure, termed intrinsic synchrosqueezing transform (ISC), is proposed for the analysis of coupled nonlinear and non-stationary multivariate signals. This is achieved based on a combination of noise-assisted multivariate empirical mode decomposition and short-time Fourier transform-based univariate and multivariate synchrosqueezing transforms. It is shown that the ISC outperforms six other combinations of algorithms in estimating degrees of synchrony in synthetic linear and nonlinear bivariate signals. Its advantage is further illustrated in the precise identification of the synchronized respiratory and heart rate variability frequencies among a subset of bass singers of a professional choir, where it distinctly exhibits better performance than the continuous wavelet transform-based ISC. We also introduce an extension to the intrinsic phase synchrony (IPS) measure, referred to as nested intrinsic phase synchrony (N-IPS), for the empirical quantification of physically meaningful and straightforward-to-interpret trends in phase synchrony. The N-IPS is employed to reveal physically meaningful variations in the levels of cooperation in choir singing and performing a surgical procedure. Both the proposed techniques successfully reveal degrees of synchronization of the physiological signals in two different aspects: (i) precise localization of synchrony in time and frequency (ISC), and (ii) large-scale analysis for the empirical quantification of physically meaningful trends in synchrony (N-IPS).

9.
R Soc Open Sci ; 4(11): 171214, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29291107

RESUMO

Mobile technologies for the recording of vital signs and neural signals are envisaged to underpin the operation of future health services. For practical purposes, unobtrusive devices are favoured, such as those embedded in a helmet or incorporated onto an earplug. However, these locations have so far been underexplored, as the comparably narrow neck impedes the propagation of vital signals from the torso to the head surface. To establish the principles behind electrocardiogram (ECG) recordings from head and ear locations, we first introduce a realistic three-dimensional biophysics model for the propagation of cardiac electric potentials to the head surface, which demonstrates the feasibility of head-ECG recordings. Next, the proposed biophysics propagation model is verified over comprehensive real-world experiments based on head- and in-ear-ECG measurements. It is shown both that the proposed model is an excellent match for the recordings, and that the quality of head- and ear-ECG is sufficient for a reliable identification of the timing and shape of the characteristic P-, Q-, R-, S- and T-waves within the cardiac cycle. This opens up a range of new possibilities in the identification and management of heart conditions, such as myocardial infarction and atrial fibrillation, based on 24/7 continuous in-ear measurements. The study therefore paves the way for the incorporation of the cardiac modality into future 'hearables', unobtrusive devices for health monitoring.

10.
IEEE J Transl Eng Health Med ; 4: 2700111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27957405

RESUMO

Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet.

11.
Ann Am Thorac Soc ; 13(12): 2229-2233, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27684316

RESUMO

RATIONALE: To date, EEG is the only quantifiable measure of the neural changes that define sleep. Although it is used widely for clinical testing, scalp-electrode EEG is costly and is poorly tolerated by sleeping patients. OBJECTIVES: This was a pilot study to assess the agreement between EEG recordings obtained from a new ear-EEG sensor and those obtained simultaneously from standard scalp electrodes. METHODS: Participants were four healthy men, 25 to 36 years of age. During naps, EEG tracings were recorded simultaneously from the ear sensor and from standard scalp electrodes. A clinical expert, blinded to the data collection, analyzed 30-second epochs of recordings from both devices, using standardized criteria. The agreement between scalp- and ear-recordings was assessed. MEASUREMENTS AND MAIN RESULTS: We scored 360 epochs (scalp-EEG and ear-EEG), of which 254 (70.6%) were scored as non-REM sleep using scalp-EEG. The ear-EEG sensor had a sensitivity of 0.88 (95% confidence interval [CI], 0.82-0.92) and a specificity of 0.78 (95% CI, 0.70-0.84) in detecting N2/N3 sleep. The kappa coefficient between the scalp- and the ear-EEG was 0.65 (95% CI, 0.58-0.73). As a sleep monitor (all non-REM sleep stages vs. wake), the in-ear sensor had a sensitivity of 0.91 (95% CI, 0.87-0.94) and a specificity of 0.66 (95% CI, 0.56-0.75). The kappa coefficient was 0.60 (95% CI, 0.50-0.69). CONCLUSIONS: Substantial agreement was observed between recordings derived from a new ear-EEG sensor and conventional scalp electrodes on four healthy volunteers during daytime naps.


Assuntos
Eletroencefalografia/instrumentação , Monitorização Fisiológica/instrumentação , Fases do Sono/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Voluntários Saudáveis , Humanos , Masculino , Projetos Piloto , Sensibilidade e Especificidade , Reino Unido
12.
Philos Trans A Math Phys Eng Sci ; 374(2065): 20150199, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26953174

RESUMO

An extension to multivariate empirical mode decomposition (MEMD), termed adaptive-projection intrinsically transformed MEMD (APIT-MEMD), is proposed to cater for power imbalances and inter-channel correlations in real-world multichannel data. It is shown that the APIT-MEMD exhibits similar or better performance than MEMD for a large number of projection vectors, whereas it outperforms MEMD for the critical case of a small number of projection vectors within the sifting algorithm. We also employ the noise-assisted APIT-MEMD within our proposed intrinsic multiscale analysis framework and illustrate the advantages of such an approach in notoriously noise-dominated cooperative brain-computer interface (BCI) based on the steady-state visual evoked potentials and the P300 responses. Finally, we show that for a joint cognitive BCI task, the proposed intrinsic multiscale analysis framework improves system performance in terms of the information transfer rate.


Assuntos
Interfaces Cérebro-Computador , Processamento de Sinais Assistido por Computador , Algoritmos , Engenharia Biomédica , Eletroencefalografia , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-26736636

RESUMO

The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort.


Assuntos
Encéfalo/fisiologia , Eletrodos , Dispositivos de Proteção da Cabeça , Frequência Cardíaca , Humanos , Monitorização Fisiológica/instrumentação , Motocicletas
14.
Artigo em Inglês | MEDLINE | ID: mdl-25570561

RESUMO

This work introduces a novel physiological sensor, which combines electrical and mechanical modalities in a co-located arrangement, to reject motion-induced artefacts. The mechanically sensitive element consists of an electret condenser microphone containing a light diaphragm, allowing it to detect local mechanical displacements and disregard large-scale whole body movements. The electrically sensitive element comprises a highly flexible membrane, conductive on one side and insulating on the other. It covers the sound hole of the microphone, thereby forming an isolated pocket of air between the membrane and the diaphragm. The co-located arrangement of the modalities allows the microphone to sense mechanical disturbances directly through the electrode, thus providing an accurate proxy to artefacts caused by relative motion between the skin and the electrode. This proxy is used to reject such artefacts in the electrical physiological signals, enabling enhanced recording quality in wearable health applications.


Assuntos
Artefatos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento/fisiologia , Vestuário , Eletrodos , Eletroencefalografia , Mãos/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...