Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 883: 163479, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37068671

RESUMO

Textile production is one of the main sources of freshwater consumption by industries worldwide. In addition, according to the world bank, 20 % of the wastewater generated globally is caused by textile wet-processing. Textile wet-processing includes the processes in textile production where garments are dyed or given the final functions like water-repellency. Several thousand chemicals were used in this process, some of which are highly toxic. Discharging untreated or insufficiently treated wastewater in water bodies results in high pollution levels, severely impacting the environment and human health. Especially in textile-producing countries like India, environmental pollution and water consumption from textile wet-processing have severe impacts. Next to the high volume of chemicals used in textile production, the high salt concentration in textile wastewater also poses a challenge and is critical for freshwater systems. Moreover, textile wastewater is one of the most difficult to treat wastewater. Currently, used treatment technologies do not meet the requirements to treat textile wastewater. Therefore, the further development of efficient treatment technologies for textile wastewater is critically important. Hence, in the interdisciplinary project, effect-based monitoring demonstrates the efficiency of electrically-driven water treatment processes to remove salts and micropollutants from process water (EfectroH2O), a low-energy Zero Liquid Discharge (ZLD) textile wastewater treatment technology is being developed consisting of a combination of capacitive deionization (CDI) and advanced oxidation processes (AOP). In addition to treatment technology development, methods for evaluating the efficiency of treatment technologies also need to be improved. Currently, mainly physicochemical parameters such as pH, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) are tested worldwide to check water quality. However, these methods are insufficient to make a statement about the toxic potential of such complex mixtures as textile wastewater. Therefore, also next to chemical analyses, effect-based methods (EBM) are used to verify the treated wastewater.

2.
J Taiwan Inst Chem Eng ; 144: 104732, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36817942

RESUMO

Background: The COVID-19 pandemic has leveraged facial masks to be one of the most effective measures to prevent the spread of the virus, which thereby has exponentially increased the usage of facial masks that lead to medical waste mismanagements which pose a serious threat to life. Thermal degradation or pyrolysis is an effective treatment method for the used facial mask wastes and this study aims to investigate the thermal degradation of the same. Methods: Predicted the TGA experimental curves of the mask components using a Machine Learning model known as Artificial Neural Network (ANN). Significant findings: Three different parts of the mask namely- ribbon, body, and corner were separated and used for the analysis. The thermal degradation behavior is studied using Thermogravimetric Analysis (TGA) and this is crucial for determining the reactivity of the individual mask components as they are subjected to a range of temperatures. Using the curves obtained from TGA, kinetic parameters such as Activation energy (E) and Pre-exponential factor (A) were estimated using the Coats-Redfern model-fitting method. Using the determined kinetic parameters, thermodynamic quantities such as a change in Enthalpy (ΔH), Entropy (ΔS), and Gibbs-Free energy (ΔG) were also calculated. Since TGA is a costly and time-consuming process, this study attempted to predict the TGA experimental curves of the mask components using a Machine Learning model known as Artificial Neural Network (ANN). The dataset obtained at a heating rate of 10°C/min was used to train the 3 different neural networks corresponding to the mask components and it showed an excellent agreement with experimental data (R2 > 0.99). Through this study, a complex chemical process such as thermal degradation was modelled using Machine Learning based on available experimental parameters without delving into the intricacies and complexities of the process.

3.
RSC Adv ; 12(13): 7612-7620, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424760

RESUMO

Catalytic pyrolysis of mixed plastic waste to fuel oil experiment was tested with ZSM-5 zeolite (commercial and synthesized) catalysts along with other catalysts. The ZSM-5 zeolite catalyst was effectively produced using a hydrothermal technique via metakaolin as an alumina source. The catalytic pyrolysis of different types of plastic (single and multilayer) wastes in the presence of various catalysts was tested with a bench-scale pyrolysis setup with 2 kg per batch capacity. Polyolefin based plastics (low-density polyethylene, high-density polyethylene, and polypropylene), multilayer plastics such as biaxial oriented polypropylene (BOPP), metalized biaxial oriented polypropylene layers (MET BOPP), polyethylene terephthalate (PET), metalized polyethylene terephthalate (MET/PET), polyethylene terephthalate combined polyethylene (PET/PE), and mixed plastic waste collected from the corporation sorting center were pyrolyzed in a batch pyrolysis system with 1 kg feed to determine the oil, gas and char distributions. The performances of commercial ZSM-5 and lab synthesized ZSM-5 catalysts were compared for the pyrolysis of non-recyclable plastic wastes. Other commercial catalysts including mordenite and gamma alumina were also tested for pyrolysis experiments. The gross calorific value of oil obtained from different combinations of multilayer packaging waste varied between 10 789-7156 kcal kg-1. BOPP-based plastic waste gave higher oil yield and calorific value than PET-based plastic waste. Sulfur content present in the oil from different plastic wastes was measured below the detection limit. The synthesized ZSM-5 zeolite catalyst produced a maximum oil output of 70% and corresponding gas and char of 16% and 14% for LDPE plastic. The strong acidic properties and microporous crystalline structure of the synthesized ZSM-5 catalyst enables increased cracking and isomerization, leading to an increased breakup of larger molecules to smaller molecules forming more oil yield in the pyrolysis experiments. Residual char analysis showed the maximum percentage of carbon with heavy metal concentrations (mg kg-1) in the range of viz., chromium (15.36-97.48), aluminium (1.03-2.54), cobalt (1.0-5.85), copper (115.37-213.59), lead (89.12-217.3), and nickel (21.05-175.41), respectively.

4.
J Contam Hydrol ; 234: 103683, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32717570

RESUMO

Visualization of NAPLs in multiphase systems in porous media is important for determining contaminant transport in the environment. In this study, magnetic resonance imaging (MRI) was used to confirm the recent observations of mobilisation of a light non aqueous phase liquid (LNAPL) trapped in wet sand under natural drying conditions of the wet porous medium. Visualization of LNAPL (motor oil) and water mobility during the drying of wet glass beads (0.5 mm) in a cylindrical glass column (15 mm ID, 45 mm long) was obtained using spin echo-based NMR microimaging performed at 500 MHz, corresponding to a field of ca. 11.75 T. Sagittal and axial images of LNAPL and water in the porous medium were obtained at a spatial resolution of 59 µm/pixel at different time intervals. A rise of 15-20 mm was observed in the presence of evaporation of water as compared to a 2-3 mm rise in the absence of evaporation in a time span of about 1400 min. The spatio-temporal MRI scans of the water and LNAPL in the glass column reveals that LNAPL rise occurs when the water evaporation front reaches the LNAPL layer. This implied that the enhanced LNAPL rise was strongly linked to the process of water evaporation. A linear correlation of the MRI signal intensities of LNAPL and water with reference to different saturation levels of LNAPL and water in the porous media was obtained. This calibration information was used to quantify the saturation levels of the LNAPL and water during the drying process. These findings show the application of non-invasive techniques such as MRI in quantifying and understanding the mechanism of fate and transport of LNAPLs in porous media, towards effective environmental quality assessment.


Assuntos
Imageamento por Ressonância Magnética , Movimentos da Água , Porosidade
5.
J Contam Hydrol ; 209: 1-13, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29329939

RESUMO

Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.


Assuntos
Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Porosidade , Dióxido de Silício , Viscosidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...