Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861761

RESUMO

Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling. Adult endoglin mutant zebrafish developed skin AVMs, retinal vascular abnormalities and cardiac enlargement. Embryonic endoglin mutants developed an enlarged basilar artery (similar to the previously described enlarged aorta and cardinal vein) and larger numbers of endothelial membrane cysts (kugeln) on cerebral vessels. Vegf inhibition prevented these embryonic phenotypes, leading us to investigate specific Vegf signalling pathways. Inhibiting mTOR or MEK pathways prevented abnormal trunk and cerebral vasculature phenotypes, whereas inhibiting Nos or Mapk pathways had no effect. Combined subtherapeutic mTOR and MEK inhibition prevented vascular abnormalities, confirming synergy between these pathways in HHT. These results indicate that the HHT-like phenotype in zebrafish endoglin mutants can be mitigated through modulation of Vegf signalling. Combined low-dose MEK and mTOR pathway inhibition could represent a novel therapeutic strategy in HHT.


Assuntos
Malformações Arteriovenosas , Telangiectasia Hemorrágica Hereditária , Animais , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/genética , Peixe-Zebra/metabolismo , Endoglina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Malformações Arteriovenosas/genética , Serina-Treonina Quinases TOR , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Receptores de Activinas Tipo II/genética , Mutação/genética
2.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218044

RESUMO

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter, playing a central role in the regulation of cortical excitability and the maintenance of the excitatory/inhibitory (E/I) balance. Several lines of evidence point to a remodeling of the cerebral GABAergic system in Alzheimer's disease (AD), with past studies demonstrating alterations in GABA receptor and transporter expression, GABA synthesizing enzyme activity and focal GABA concentrations in post-mortem tissue. AD is a chronic neurodegenerative disorder with a poorly understood etiology and the temporal cortex is one of the earliest regions in the brain to be affected by AD neurodegeneration. Utilizing NanoString nCounter analysis, we demonstrate here the transcriptional downregulation of several GABA signaling components in the post-mortem human middle temporal gyrus (MTG) in AD, including the GABAA receptor α1, α2, α3, α5, ß1, ß2, ß3, δ, γ2, γ3, and θ subunits and the GABAB receptor 2 (GABABR2) subunit. In addition to this, we note the transcriptional upregulation of the betaine-GABA transporter (BGT1) and GABA transporter 2 (GAT2), and the downregulation of the 67 kDa isoform of glutamate decarboxylase (GAD67), the primary GABA synthesizing enzyme. The functional consequences of these changes require further investigation, but such alterations may underlie disruptions to the E/I balance that are believed to contribute to cognitive decline in AD.


Assuntos
Doença de Alzheimer/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais , Lobo Temporal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Autopsia , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Humanos , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de GABA/genética , Receptores de GABA-A/genética
3.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384683

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which no cognition-restoring therapies exist. Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. Increasing evidence suggests a remodeling of the GABAergic system in AD, which might represent an important therapeutic target. An inverse agonist of 5 subunit-containing GABAA receptors (α5GABAARs), 3-(5-Methylisoxazol-3-yl)-6-[(1-methyl-1,2,3-triazol-4-yl)methyloxy]-1,2,4-triazolo[3-a]phthalazine (5IA) has cognition-enhancing properties. This study aimed to characterize the effects of 5IA on amyloid beta (A1-42)-induced molecular and cellular changes. Mouse primary hippocampal cultures were exposed to either A1-42 alone, or 5IA alone, 5IA with A1-42 or vehicle alone, and changes in cell viability and mRNA expression of several GABAergic signaling components were assessed. Treatment with 100 nM of 5IA reduced A1-42-induced cell loss by 23.8% (p < 0.0001) after 6 h and by 17.3% after 5 days of treatment (p < 0.0001). Furthermore, we observed an A1-42-induced increase in ambient GABA levels, as well as upregulated mRNA expression of the GABAAR α2,α5,2/3 subunits and the GABABR R1 and R2 subunits. Such changes in GABARs expression could potentially disrupt inhibitory neurotransmission and normal network activity. Treatment with 5IA restored A1-42-induced changes in the expression of α5GABAARs. In summary, this compound might hold neuroprotective potential and represent a new therapeutic avenue for AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Agonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Ftalazinas/farmacologia , Triazóis/farmacologia , Animais , Morte Celular , Células Cultivadas , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transmissão Sináptica
5.
Bioorg Med Chem Lett ; 29(21): 126644, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31564385

RESUMO

The cannabinoid-1 receptor (CB1R) inverse agonist SR141716A has proven useful for study of the endocannabinoid system, including development of divalent CB1R ligands possessing a second functional motif attached via a linker unit. These have predominantly employed the C3 position of the central pyrazole ring for linker attachment. Despite this precedent, a novel series of C3-linked CB1R-D2R divalent ligands exhibited extremely high affinity at the D2R, but only poor affinity for the CB1R. A systematic linker attachment point survey of the SR141716A pharmacophore was therefore undertaken, establishing the C5 position as the optimal site for linker conjugation. This linker attachment survey enabled the identification of a novel divalent ligand as a lead compound to inform ongoing development of high-affinity CB1R molecular probes.


Assuntos
Canabinoides/química , Receptor CB1 de Canabinoide/agonistas , Rimonabanto/química , Sítio Alostérico , Ligação Competitiva , Ligantes , Sondas Moleculares , Estrutura Molecular , Ligação Proteica , Pirazóis/química , Rimonabanto/metabolismo , Relação Estrutura-Atividade
6.
J Clin Med ; 8(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083442

RESUMO

Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of ß-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.

8.
J Neurochem ; 146(6): 649-669, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29645219

RESUMO

Glutamatergic and cholinergic dysfunction are well-attested features of Alzheimer's disease (AD), progressing with other pathological indices of the disorder and exacerbating neuronal and network dysfunction. However, relatively little attention has been paid to the inhibitory component of the excitatory/inhibitory (E/I) network, particularly dysfunction in the gamma-aminobutyric acid (GABA) signaling system. There is growing evidence in support of GABAergic remodeling in the AD brain, potentially beginning in early stages of disease pathogenesis, and this could thus be a valid molecular target for drug development and pharmacological therapies. Several GABAergic drugs have been tested for efficacy in attenuating or reversing various features and symptoms of AD, and this could represent a novel path by which we might address the growing need for more effective and benign therapies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
9.
Int J Mol Sci ; 18(8)2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825683

RESUMO

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer's disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios GABAérgicos/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Neurônios GABAérgicos/patologia , Humanos
10.
Trends Pharmacol Sci ; 37(5): 353-363, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26917061

RESUMO

Bivalent ligands bridging two G-protein-coupled receptors (GPCRs) provide valuable pharmacological tools to target oligomers. The success of therapeutically targeting the cannabinoid CB1 receptor has been limited, in part due to its widespread neuronal distribution. Therefore, CB1 ligands targeting oligomers that exhibit restricted distribution or altered pharmacology are highly desirable, and several bivalent ligands containing a CB1 pharmacophore have been reported. Bivalent ligand action presumes that the ligand simultaneously binds to both receptors within the dimeric complex. However, based on the current understanding of CB1 ligand binding, existing bivalent ligands are too short to bind both receptors simultaneously. However, ligands with longer linkers may not be the solution, because evidence suggests that ligands enter CB1 through the lipid bilayer and, thus, linkers are unlikely to exit the receptor through its external face. Thus, the entire premise of designing bivalent ligands targeting CB1 must be revisited.


Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Ligantes , Modelos Moleculares , Terapia de Alvo Molecular , Multimerização Proteica , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...