Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406858

RESUMO

Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions. Our findings showed that exposure of wheat plants to deficit irrigation in salt-affected soil inhibited wheat growth and development, and eventually reduced crop productivity. However, these injurious impacts were diminished after soil amendment using the combined application of compost and PGPR. This combined application enhanced soil urease and dehydrogenase, ion selectivity, chlorophylls, carotenoids, stomatal conductance, and the relative water content (RWC) whilst reducing ESP, proline content, which eventually increased the yield-related traits of wheat plants under deficient irrigation conditions. Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.

2.
Plants (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34961069

RESUMO

Water scarcity, due to physical shortage or inadequate access, is a major global challenge that severely affects agricultural productivity and sustainability. Deficit irrigation is a promising strategy to overcome water scarcity, particularly in arid and semiarid regions with limited freshwater resources. However, precise application of deficit irrigation requires a better understanding of the plant response to water/drought stress. In the current study, we investigated the potential impacts of biochar-based soil amendment and foliar potassium-humate application (separately or their combination) on the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficient irrigation conditions in two separate field trials during the 2018/2019 and 2019/2020 seasons. Our findings showed that deficit irrigation negatively affected onion resilience to drought stress. However, these harmful effects were diminished after soil amendment using biochar, K-humate foliar application, or their combination. Briefly, integrated biochar and K-humate application increased onion growth, boosted the content of the photosynthetic pigments, enhanced the water relations, and increased the yield traits of deficient irrigation onion plants. Moreover, it improved the biochemical response, enhanced the activities of antioxidant enzymes, and enriched the nutrient value of deficiently irrigated onion plants. Collectively, these findings highlight the potential utilization of biochar and K-humate as sustainable eco-friendly strategies to improve onion resilience to deficit irrigation.

3.
Plants (Basel) ; 10(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34579461

RESUMO

Osmotic stress is a major physiologic dysfunction that alters the water movement across the cell membrane. Soil salinity and water stress are major causal factors of osmotic stress that severely affect agricultural productivity and sustainability. Herein, we suggested and evaluated the impact of integrated biochar-based soil amendment and exogenous glycine betaine application on the growth, physiology, productivity, grain quality, and osmotic stress tolerance of rice (Oryza sativa L., cv. Sakha 105) grown in salt-affected soil under three irrigation intervals (6, 9, or 12 days), as well as soil properties and nutrient uptake under field conditions during the 2019 and 2020 seasons. Our findings showed that dual application of biochar and glycine betaine (biochar + glycine betaine) reduced the soil pH, electrical conductivity, and exchangeable sodium percentage. However, it enhanced the K+ uptake which increased in the leaves of treated-rice plants. Additionally, biochar and glycine betaine supplementation enhanced the photosynthetic pigments (chlorophyll a, b, and carotenoids) and physiological attributes (net photosynthetic rate, stomatal conductance, relative water content, and electrolyte leakage) of osmotic-stressed rice plants. Biochar + glycine betaine altered the activity of antioxidant-related enzymes (catalase, ascorbate peroxide, and peroxidase). Moreover, it improved the yield components, biological yield, and harvest index, as well as the nutrient value of rice grains of osmotic-stressed rice plants. Collectively, these findings underline the potential application of biochar and glycine betaine as a sustainable eco-friendly strategy to improve plant resilience, not only rice, but other plant species in general and other cereal crops in particular, to abiotic stress, particularly those growing in salt-affected soil.

4.
Plants (Basel) ; 10(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34371599

RESUMO

Water stress or soil salinity is considered the major environmental factor affecting plant growth. When both challenges are present, the soil becomes infertile, limiting plant productivity. In this work a field experiment was conducted during the summer 2019 and 2020 seasons to evaluate whether plant growth-promoting microbes (PGPMs) and nanoparticles (Si-ZnNPs) have the potential to maintain soybean growth, productivity, and seed quality under different watering intervals (every 11 (IW0), 15 (IW1) and 19 (IW2) days) in salt-affected soil. The most extended watering intervals (IW1 and IW2) caused significant increases in Na+ content, and oxidative damage indicators (malondialdehyde (MDA) and electrolyte leakage (EL%)), which led to significant reductions in soybean relative water content (RWC), stomatal conductance, leaf K+, photosynthetic pigments, soluble protein. Subsequently reduced the vegetative growth (root length, nodules dry weight, and total leaves area) and seeds yield. However, there was an enhancement in the antioxidants defense system (enzymatic and non-enzymatic antioxidant). The individual application of PGPMs or Si-ZnNPs significantly improved leaf K+ content, photosynthetic pigments, RWC, stomatal conductance, total soluble sugars (TSS), CAT, POD, SOD, number of pods plant-1, and seed yield through decreasing the leaf Na+ content, MDA, and EL%. The combined application of PGPMs and Si-ZnNPs minimized the adverse impact of water stress and soil salinity by maximizing the root length, heavier nodules dry weight, leaves area, TSS and the activity of antioxidant enzymes, which resulted in higher soybean growth and productivity, which suggests their use under harsh growing conditions.

5.
Plants (Basel) ; 10(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925247

RESUMO

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant-1, number of seeds pod-1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.

6.
PLoS One ; 16(3): e0248890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780480

RESUMO

Wheat has remarkable importance among cereals in Egypt. Salt stress affects plant growth, development, and crop productivity. Therefore, salinity tolerance is an essential trait that must be incorporated in crops. This research aimed to investigate molecular and biochemical indicators and defence responses in seedlings of 14 Egyptian wheat genotypes to distinguish the most contrasting salt-responsive genotypes. Analysis of ISSR and SCoT markers revealed high polymorphism and reproducible fingerprinting profiles for evaluating genetic variability within the studied genotypes. The HB-10 and SCoT 1 primers had the highest values for all the studied parameters. All the tested primers generated a set of 66 polymorphic bands among tolerant and sensitive genotypes. The transcript profiles of eight TaWRKY genes showed significant induction under the salinity treatments. Moreover, the expression of TaWRKY6 for genotypes Sids 14 and Sakha 93 sharply increased and recorded the highest expression, while the expression of TaWRKY20 for Misr 1 recorded the lowest expression. Under salt stress, the total sugar, proline, and phenolic contents increased significantly, while the chlorophyll content decreased significantly. Additionally, five peroxidase and polyphenol oxidase isoforms were observed in treated leaves and clustered into five different patterns. Some isoforms increased significantly as salinity levels increased. This increase was clearer in salt-tolerant than in salt-sensitive genotypes. Eighteen protein bands appeared, most of which were not affected by salinity compared with the control, and specific bands were rare. Generally, the Sids 14, Sakha 93, Sohag 4, and Gemmeiza 12 genotypes are considered salt tolerant in comparison to the other genotypes.


Assuntos
Variação Genética , Estresse Salino/genética , Triticum/genética , Triticum/fisiologia , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marcadores Genéticos , Genótipo , Isoenzimas/metabolismo , Fenol/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Análise de Componente Principal , Prolina/metabolismo , Salinidade , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Açúcares/metabolismo , Triticum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...