Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Mol Biol ; 298(3): 461-75, 2000 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-10772863

RESUMO

Many processes are governed by proteins that bind to separate sites in DNA and loop out the intervening DNA, but the geometries of the loops have seldom been determined. The SfiI endonuclease cleaves DNA after interacting with two recognition sites, and is a favourable system for the analysis of DNA looping. A gel-shift assay was used here to examine the binding of SfiI to a series of linear DNA molecules containing two SfiI sites separated by 109-170 base-pairs. The complexes in which SfiI trapped a loop by binding to two sites in the same DNA were separated from the complexes containing SfiI bound to separate DNA molecules. Step-wise changes in the inter-site spacing generated two forms of the looped complex with different electrophoretic mobilities. The yields of each looped complex and the complexes from intermolecular synapses all varied cyclically with the inter-site spacing, with similar periodicities ( approximately 10.5 base-pairs) but with different phases. One looped complex predominated whenever the DNA between the sites needed to be underwound in order to produce the correct helical orientation of the binding sites. The other looped complex predominated whenever the intervening DNA needed to be overwound. We conclude that the former has trapped a right-handed loop with a negative node and the latter a left-handed loop with a positive node.


Assuntos
DNA/química , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Conformação de Ácido Nucleico , Sequência de Bases , Sítios de Ligação , DNA/genética , Pegada de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Cinética , Modelos Moleculares , Mutação/genética , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Termodinâmica
3.
Biochemistry ; 38(41): 13747-58, 1999 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-10521282

RESUMO

DNase I footprinting has been used to study the formation of parallel triplexes at oligopurine target sequences which are interrupted by pyrimidines at regular intervals. TA interruptions are targeted with third strand oligonucleotides containing guanine, generating G x TA triplets, while CG base pairs are targeted with thymine, forming T x CG triplets. We have attempted to optimize the stability of these complexes by varying the base composition and sequence arrangement of the target sites, and by replacing the third strand thymines with the positively charged analogue 5-(1-propargylamino)dU (U(P)). For the target sequence (AAAT)(5)AA, in which pyrimidines are positioned at every fourth residue, triplex formation with TG-containing oligonucleotides is only detected in the presence of a triplex-binding ligand, though stable triplexes were detected at the target site (AAAAAT)(3)AAAA. Triplex stability at targets containing pyrimidines at every fourth residue is increased by introducing guanines into the duplex repeat unit using the targets (AGAT)(5)AA and (ATGA)(5)AA. In contrast, placing C(+) x GC triplets on the 5'-side of G x TA, using the target (AGTA)(5)TT, produces complexes of lower stability. We have attempted further to increase the stability of these complexes by using the positively charged thymine base analogue U(P), and have shown that (TU(P)TG)(5)TT forms a more stable complex with target (AAAT)(5)AA than the unmodified third strand, generating a footprint in the absence of a triplex-binding ligand. Triplex formation at (AGTA)(5)AA is improved by using the modified oligonucleotide (TCGU(P))(5)TT, generating a complex in which the charged triplets C(+) x GC and U(P) x AT alternate with uncharged triplets. In contrast, placing U(P) x AT triplets adjacent to C(+) x GC, using the third strand oligonucleotide (U(P)CGT)(5)TT, reduces triplex formation, while the third strand with both substitutions, (U(P)CGU(P))(5)TT, produces a complex with intermediate stability. It appears that, although adjacent U(P) x AT triplets form stable triplexes, placing U(P) x AT adjacent to C(+) x GC is unfavorable. Similar results were obtained with fragments containing CG inversions within the oligopurine tract, though triplexes at (AAAAAC)(3)AA were only detected in the presence of a triplex-binding ligand. Placing C(+) x GC on the 5'-side of T x CG triplets also reduces triplex formation, while a 3'-C(+) x GC produces complexes with increased stability.


Assuntos
Citosina/química , DNA/química , Desoxiuridina/análogos & derivados , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Nucleotídeos de Pirimidina/química , Adenina/química , Pegada de DNA , Desoxirribonuclease I , Desoxiuridina/química , Guanina/química , Substâncias Macromoleculares , Prótons , Timina/química
4.
Nucleic Acids Res ; 27(7): 1569-77, 1999 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10075986

RESUMO

The formation of intermolecular DNA triple helices offers the possibility of designing compounds with extensive sequence recognition properties which may be useful as antigene agents or tools in molecular biology. One major limitation of this approach is that these structures are generally restricted to homo-purine. homopyrimidine target sites. This review describes the strategies that have been employed to overcome this drawback and outlines the potential for triplex formation at mixed sequence DNA targets.


Assuntos
DNA/metabolismo , Sítios de Ligação
7.
Nucleic Acids Res ; 26(16): 3626-33, 1998 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9685475

RESUMO

We have used DNase I footprinting to investigate the recognition of (AT) n tracts in duplex DNA using GT-containing oligonucleotides designed to form alternating G.TA and T.AT triplets. Previous studies have shown that the formation of these complexes is facilitated by anchoring the triplex with a block of adjacent T.AT triplets, i.e. using T11(TG)6to recognize the target A11(AT)6. (AT)6T11. In the present study we have examined how the stability of these complexes is affected by the length of either the T.AT tract or the region of alternating G.TA and T.AT triplets, using oligonucleotides of type T x (TG) y to recognize the sequence A11(AT)11. We find that successful triplex formation at (AT)n (n = 3, 6 or 11) can be achieved with a stabilizing tail of 11xT.AT triplets. The affinity of the third strand increases with the length of the (GT) n tract, suggesting that the alternating G.TA and T.AT triplets are making a positive contribution to stability. These complexes are stabilized by the presence of manganese or a triplex-specific binding ligand. Shorter oligo-nucleotides, such as T7(TG)5, bind less tightly and require the addition of a triplex-binding ligand. T4(GT)5showed no binding under any conditions. Oligo-nucleotides forming a 3'-terminal T.AT are marginally more stable that those with a terminal G.TA. The stability of these complexes was further increased by replacing two of the T.AT triplets in the T n tail region with two C+.GC triplets.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Poli dA-dT/química , Sequência de Bases , Cátions Bivalentes , Pegada de DNA , Desoxirribonuclease I , Estabilidade de Medicamentos , Ligantes , Dados de Sequência Molecular , Nucleotídeos de Purina/química
8.
Nucleic Acids Res ; 25(19): 3787-94, 1997 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9380499

RESUMO

We have used DNase I footprinting to assess the formation of triple helices at 15mer oligopurine target sites which are interrupted by several (up to four) adjacent central pyrimidine residues. Third strand oligonucleotides were designed to generate complexes containing central (X.TA)nor (X.CG)n triplets (X = each base in turn) surrounded by C+.GC and T.AT triplets. It has previously been shown that G.TA and T.CG are the most stable triplets for recognition of single TA and CG interruptions. We show that these triplets are the most useful for recognizing consecutive pyrimidine interruptions and find that addition of each pyrimidine residue leads to a 30-fold decrease in third strand affinity. The addition of 10 microM naphthylquinoline triplex-binding ligand stabilizes each complex so that all the oligonucleotides produce footprints at similar concentrations (0.3 microM). Targets containing two pyrimidines are only bound by oligonucleotides generating (G.TA)2 and (T.CG)2 with a further 30-fold decrease in affinity. (G.TA)2 is slightly more stable than (T.CG)2. In the presence of the triplex-binding ligand the order of stability is (G.TA)2 > (C.TA)2 > (T.TA)2 > (A.TA)2 and (T.CG)2 > (C.CG)2 > (G.CG)2 = (A.CG)2. No oligonucleotide footprints are generated at target sites containing three consecutive pyrimidines, though addition of 10 microM triplex-binding ligand produces stable complexes with oligonucleotides generating (G.TA)3, (T.CG)3 and (C.CG)3, with a further 30-fold reduction in affinity. No footprints are generated at targets containing four Ts, though the ligand induces a weak interaction with the oligonucleotide generating (T.CG)4.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Sequência de Bases , Sítios de Ligação , DNA/síntese química , DNA/genética , Pegada de DNA , Desoxirribonuclease I , Estrutura Molecular , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Purinas/química , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...