Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2220037120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252980

RESUMO

The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca2+-dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders.


Assuntos
Cálcio , Proteínas Hedgehog , Proteínas de Xenopus , Cálcio/metabolismo , Diferenciação Celular , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Tubo Neural/metabolismo , Neurogênese/fisiologia , Xenopus laevis , Animais
2.
Front Mol Neurosci ; 13: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390800

RESUMO

Ion channels are expressed throughout nervous system development. The type and diversity of conductances and gating mechanisms vary at different developmental stages and with the progressive maturational status of neural cells. The variety of ion channels allows for distinct signaling mechanisms in developing neural cells that in turn regulate the needed cellular processes taking place during each developmental period. These include neural cell proliferation and neuronal differentiation, which are crucial for developmental events ranging from the earliest steps of morphogenesis of the neural tube through the establishment of neuronal circuits. Here, we compile studies assessing the ontogeny of ionic currents in the developing nervous system. We then review work demonstrating a role for ion channels in neural tube formation, to underscore the necessity of the signaling downstream ion channels even at the earliest stages of neural development. We discuss the function of ion channels in neural cell proliferation and neuronal differentiation and conclude with how the regulation of all these morphogenetic and cellular processes by electrical activity enables the appropriate development of the nervous system and the establishment of functional circuits adapted to respond to a changing environment.

3.
J Neurosci ; 38(20): 4762-4773, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29712790

RESUMO

Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation.SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy.


Assuntos
Anticonvulsivantes/toxicidade , Defeitos do Tubo Neural/fisiopatologia , Tubo Neural/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Movimento Celular , Proliferação de Células , Feminino , Glutamatos/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Placa Neural/citologia , Placa Neural/crescimento & desenvolvimento , Tubo Neural/crescimento & desenvolvimento , Defeitos do Tubo Neural/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/toxicidade , Xenopus laevis
4.
Nat Commun ; 7: 12939, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694883

RESUMO

Piezos are mechanically activated ion channels that function as sensors of touch and pressure in various cell types. However, the precise mechanism and structures mediating mechanical activation and subsequent inactivation have not yet been identified. Here we use magnetic nanoparticles as localized transducers of mechanical force in combination with pressure-clamp electrophysiology to identify mechanically sensitive domains important for activation and inactivation.


Assuntos
Canais Iônicos/química , Magnetismo , Nanopartículas/química , Animais , Calibragem , Galinhas , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Íons , Macaca mulatta , Fenômenos Mecânicos , Mecanotransdução Celular , Camundongos , Nanotecnologia , Pressão , Domínios Proteicos , Ratos , Transdução de Sinais , Lobos
5.
Biochemistry ; 54(16): 2670-2682, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25861708

RESUMO

Pentameric ligand-gated ion channels (pLGICs), also called Cys-loop receptors in eukaryotic superfamily members, play diverse roles in neurotransmission and serve as primary targets for many therapeutic drugs. Structural studies of full-length eukaryotic pLGICs have been challenging because of glycosylation, large size, pentameric assembly, and hydrophobicity. X-ray structures of prokaryotic pLGICs, including the Gloeobacter violaceus LGIC (GLIC) and the Erwinia chrysanthemi LGIC (ELIC), and truncated eukaryotic pLGICs have significantly improved and complemented the understanding of structural details previously obtained with acetylcholine-binding protein and Torpedo nicotinic acetylcholine receptors. Prokaryotic pLGICs share their overall structural features with eukaryotic pLGICs for the ligand-binding extracellular and channel-lining transmembrane domains. The large intracellular domain (ICD) is present only in eukaryotic members and is characterized by a low level of sequence conservation and significant variability in length (50-250 amino acids), making the ICD a potential target for the modulation of specific pLGIC subunits. None of the structures includes a complete ICD. Here, we created chimeras by adding the ICD of cation-conducting (nAChR-α7) and anion-conducting (GABAρ1, Glyα1) eukaryotic homopentamer-forming pLGICs to GLIC. GLIC-ICD chimeras assemble into pentamers to form proton-gated channels, as does the parent GLIC. Additionally, the sensitivity of the chimeras toward modulation of functional maturation by chaperone protein RIC-3 is preserved as in those of the parent eukaryotic channels. For a previously described GLIC-5HT3A-ICD chimera, we now provide evidence of its successful large-scale expression and purification to homogeneity. Overall, the chimeras provide valuable tools for functional and structural studies of eukaryotic pLGIC ICDs.


Assuntos
Proteínas de Bactérias/química , Dickeya chrysanthemi/química , Proteínas de Peixes/química , Proteínas Recombinantes de Fusão/química , Torpedo , Receptor Nicotínico de Acetilcolina alfa7/química , Animais , Proteínas de Bactérias/genética , Dickeya chrysanthemi/genética , Proteínas de Peixes/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Receptor Nicotínico de Acetilcolina alfa7/genética
6.
Neuron ; 82(5): 1017-31, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24814535

RESUMO

Several transient receptor potential (TRP) ion channels are activated with high sensitivity by either cold or hot temperatures. However, structures and mechanism that determine temperature directionality (cold versus heat) are not established. Here we screened 12,000 random mutant clones of the cold-activated mouse TRPA1 ion channel with a heat stimulus. We identified three single-point mutations that are individually sufficient to make mouse TRPA1 warm activated, while leaving sensitivity to chemicals unaffected. Mutant channels have high temperature sensitivity of voltage activation, specifically of channel opening, but not channel closing, which is reminiscent of other heat-activated TRP channels. All mutations are located in ankyrin repeat six, which identifies this domain as a sensitive modulator of thermal activation. We propose that a change in the coupling of temperature sensing to channel gating generates this sensitivity to warm temperatures. Our results demonstrate that minimal changes in protein sequence are sufficient to generate a wide diversity of thermal sensitivities in TRPA1.


Assuntos
Repetição de Anquirina/genética , Mutação Puntual , Temperatura , Canais de Potencial de Receptor Transitório/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetulus , Drosophila , Camundongos , Dados de Sequência Molecular , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
7.
PLoS One ; 8(10): e78301, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205192

RESUMO

The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity--14% or less--between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology/threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepTSt are most promising for further refinement.


Assuntos
Transportador de Folato Acoplado a Próton/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Animais , Biotinilação/métodos , Membrana Celular/metabolismo , Cisteína/metabolismo , Feminino , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo
8.
J Biol Chem ; 286(40): 34635-42, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21844195

RESUMO

Prokaryotic members of the Cys-loop receptor ligand-gated ion channel superfamily were recently identified. Previously, Cys-loop receptors were only known from multicellular organisms (metazoans). Contrary to the metazoan Cys-loop receptors, the prokaryotic ones consist of an extracellular (ECD) and a transmembrane domain (TMD), lacking the large intracellular domain (ICD) present in metazoa (between transmembrane segments M3 and M4). Using a chimera approach, we added the 115-amino acid ICD from mammalian serotonin type 3A receptors (5-HT(3A)) to the prokaryotic proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC). We created 12 GLIC-5-HT(3A)-ICD chimeras by replacing a variable number of amino acids in the short GLIC M3M4 linker with the entire 5-HT(3A)-ICD. Two-electrode voltage clamp recordings after expression in Xenopus laevis oocytes showed that only two chimeras were functional and produced currents upon acidification. The pH(50) was comparable with wild-type GLIC. 5-HT(3A) receptor expression can be inhibited by the chaperone protein RIC-3. We have shown previously that the 5-HT(3A)-ICD is required for the attenuation of 5-HT-induced currents when RIC-3 is co-expressed with 5-HT(3A) receptors in X. laevis oocytes. Expression of both functional 5-HT(3A) chimeras was inhibited by RIC-3 co-expression, indicating appropriate folding of the 5-HT(3A)-ICD in the chimeras. Our results indicate that the ICD can be considered a separate domain that can be removed from or added to the ECD and TMD while maintaining the overall structure and function of the ECD and TMD.


Assuntos
Cisteína/química , Aminoácidos/química , Animais , Cianobactérias/metabolismo , Escherichia coli/metabolismo , Cavalos , Concentração de Íons de Hidrogênio , Íons , Ligantes , Bicamadas Lipídicas/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/metabolismo , Conformação Proteica , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Receptores 5-HT3 de Serotonina/química , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...