Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 41(7): 1859-1874, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925871

RESUMO

Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.


Assuntos
Imagem de Tensor de Difusão/métodos , Anisotropia , Imagem de Difusão por Ressonância Magnética , Dissecação , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
2.
IEEE Trans Image Process ; 23(11): 4663-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122568

RESUMO

Change detection is one of the most commonly encountered low-level tasks in computer vision and video processing. A plethora of algorithms have been developed to date, yet no widely accepted, realistic, large-scale video data set exists for benchmarking different methods. Presented here is a unique change detection video data set consisting of nearly 90 000 frames in 31 video sequences representing six categories selected to cover a wide range of challenges in two modalities (color and thermal infrared). A distinguishing characteristic of this benchmark video data set is that each frame is meticulously annotated by hand for ground-truth foreground, background, and shadow area boundaries-an effort that goes much beyond a simple binary label denoting the presence of change. This enables objective and precise quantitative comparison and ranking of video-based change detection algorithms. This paper discusses various aspects of the new data set, quantitative performance metrics used, and comparative results for over two dozen change detection algorithms. It draws important conclusions on solved and remaining issues in change detection, and describes future challenges for the scientific community. The data set, evaluation tools, and algorithm rankings are available to the public on a website and will be updated with feedback from academia and industry in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...