Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173409, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810755

RESUMO

The distribution of geochemical species are typically either (log)normally distributed or follow power laws. Here we link these types of distributions to the dynamics of the system that generates these distributions, showing that power laws can emerge in dissipative systems far from equilibrium while (log)normal distributions are found for species for which the concentrations are close to equilibrium. We use observations of the chemical composition of river water from the sampling space in central Italy as well as discharge data to test this interpretation. We estimate the dissipation rate that results when groundwater drains into the river and the dissolved chemical species mix with the river water. We show that calcium (Ca2+) and bicarbonate (HCO3-) concentrations are close to saturation along most of the downstream length of the Arno river, with decreasing dissipation rates and a lognormal distribution, while sodium (Na+) and chloride (Cl-) concentrations increase substantially downstream, show increased dissipation rates, and are power-law distributed. This supports our hypothesis that power law distributions appear to be indicative of dissipative systems far from thermodynamic equilibrium, while (log)normal distributions indicate weakly dissipative systems close to equilibrium. What this implies is that probability distributions are likely to be indicative of the thermodynamics of the system and the magnitude of disequilibrium constrains the range over which power-law scaling may be observed. This should help us to better identify the generalities and mechanisms that result in these common types of distributions and to better classify variability in systems according to how dissipative these are.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36231535

RESUMO

Over the last decades, groundwater resources at global level have suffered a significant deterioration due to nitrate pollution, mainly related to the input of agricultural fertilizers, manure, sewage, and untreated urban and industrial effluents. The most impacted waters are those forming surface and shallow reservoirs, which usually play a key role in supplying waters to civil, agricultural, and industrial activities. The terminal portion of the Metauro River plain, located in central Italy along the Adriatic Sea coastline, hosts a strategic phreatic aquifer that, along with the surface water of the Metauro River, supplies water to the local population (i.e., about 60,000 people). This shallow coastal aquifer experiences a long-lasting story of nitrate contamination since the 1970s when the increase in the use of agricultural fertilizers contributed to very high levels of pollution (NO3- > 100 mg/L). This fact prompted the local authorities to carry out remediation actions that involve a pumping system to inject the NO3--poor waters from the Metauro River course directly into the shallow aquifer. The present work was aimed at defining the contamination of nitrates in this important water resource. The main geochemical characteristics and the temporal evolution of NO3- concentrations (between 2009 and 2020), in the shallow coastal aquifer of the Metauro River plain, were analyzed by means of classical geochemical analyses and multivariate methods accounting for the compositional nature of the data, to assess the efficiency of the in-situ remediation over time.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Fertilizantes/análise , Água Subterrânea/análise , Humanos , Esterco/análise , Nitratos/análise , Óxidos de Nitrogênio/análise , Rios , Esgotos/análise , Água/análise , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 785: 147268, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940415

RESUMO

Rivers are dynamic and sensitive systems that change their chemical composition from source to mouth. This is due to the influence of a set of variables controlled by hydro-litho-eco-atmospheric processes and anthropic pressures which are, in turn, affected by catchment attributes. This work proposes a new way of thinking about river geochemistry focused on environmental interconnections rather than single chemical variables. Abrupt changes in the system state (composition) of a certain environmental media, driven by perturbations, may trigger Geochemical Regime Shifts (GRSs). This eventuality is explored in the Tiber River (central Italy) chemistry by Compositional Data Analysis, robust Principal Component Analysis and score-distance graphs. Data variability and the interlinks between response and forcing variables are investigated for different drained areas. A potential GRS is detected for major elements in the lower reaches resulting from a threshold-like state response caused by lithological forcing. On the contrary, trace elements respond gradually to environmental drivers, showing no abrupt changes. The findings outline mechanisms and factors influencing the river's self-restoring capability at a basin-wide scale, providing a better comprehension of the circumstances controlling the equilibrium dynamics of river water systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...