Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(12): e28855, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205977

RESUMO

Heterozygous loss-of-function mutation of the human gene for the mitochondrial protease HtrA2 has been associated with increased risk to develop mitochondrial dysfunction, a process known to contribute to neurodegenerative disorders such as Huntington's disease (HD) and Parkinson's disease (PD). Knockout of HtrA2 in mice also leads to mitochondrial dysfunction and to phenotypes that resemble those found in neurodegenerative disorders and, ultimately, lead to death of animals around postnatal day 30. Here, we show that Idebenone, a synthetic antioxidant of the coenzyme Q family, and Resveratrol, a bioactive compound extracted from grapes, are both able to ameliorate this phenotype. Feeding HtrA2 knockout mice with either compound extends lifespan and delays worsening of the motor phenotype. Experiments conducted in cell culture and on brain tissue of mice revealed that each compound has a different mechanism of action. While Idebenone acts by downregulating the integrated stress response, Resveratrol acts by attenuating apoptosis at the level of Bax. These activities can account for the delay in neuronal degeneration in the striata of these mice and illustrate the potential of these compounds as effective therapeutic approaches against neurodegenerative disorders such as HD or PD.


Assuntos
Longevidade/efeitos dos fármacos , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Atividade Motora/efeitos dos fármacos , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Estilbenos/farmacologia , Ubiquinona/análogos & derivados , Animais , Contagem de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Camundongos , Neostriado/citologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Ubiquinona/farmacologia
2.
EMBO J ; 25(16): 3900-11, 2006 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16874299

RESUMO

Mitochondria are present as tubular organelles in neuronal projections. Here, we report that mitochondria undergo profound fission in response to nitric oxide (NO) in cortical neurons of primary cultures. Mitochondrial fission by NO occurs long before neurite injury and neuronal cell death. Furthermore, fission is accompanied by ultrastructural damage of mitochondria, autophagy, ATP decline and generation of free radicals. Fission is occasionally asymmetric and can be reversible. Strikingly, mitochondrial fission is also an early event in ischemic stroke in vivo. Mitofusin 1 (Mfn1) or dominant-negative Dynamin related protein 1 (Drp1(K38A)) inhibits mitochondrial fission induced by NO, rotenone and Amyloid-beta peptide. Conversely, overexpression of Drp1 or Fis1 elicits fission and increases neuronal loss. Importantly, NO-induced neuronal cell death was mitigated by Mfn1 and Drp1(K38A). Thus, persistent mitochondrial fission may play a causal role in NO-mediated neurotoxicity.


Assuntos
Dinaminas/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Membrana/fisiologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/fisiologia , Neurônios/ultraestrutura , Óxido Nítrico/fisiologia , Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Autofagia , Células Cultivadas , Córtex Cerebral/citologia , Metabolismo Energético , Radicais Livres/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Ratos , Rotenona/farmacologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
3.
Prog Brain Res ; 147: 29-37, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15581695

RESUMO

Dendritic spines are key players in information processing in the brain. Changes in spine shape and wholesale spine turnover provide mechanisms for modifying existing synaptic connections and altering neuronal connectivity. Although neuronal cell death in acute and chronic neurodegenerative diseases is clearly an important factor in decline of cognitive or motor function, loss of dendritic spines, in the absence of cell death, may also contribute to impaired brain function in these diseases, as well as in psychiatric disorders and aging. Because spines can function in neuroprotection in vitro, advances toward a molecular understanding of spine maintenance might one day aid in the design of therapies to minimize neurological damage following excitotoxic injury. In addition, progress in defining the biochemical basis of spine development and stabilization may yield insights into mental retardation and psychiatric disorders.


Assuntos
Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Plasticidade Neuronal , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA