Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 384(7-8): 1558-66, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16550420

RESUMO

Kinetic speciation of nickel, aluminium, and iron in fresh water has been investigated by cascade ultrafiltration followed by competing ligand exchange of the ultrafiltered fractions. Graphite furnace atomic absorption spectrometry was used to measure the kinetics of metal complex dissociation. Dissolved metal species were fractionated by cascade ultrafiltration. Metal speciation in each ultrafiltered fraction was then characterized as free metal ions, "labile" metal complexes (with dissociation rate constants >/=10(-3) s(-1)), "slowly labile" metal complexes (with dissociation rate constants >10(-6) s(-1)), and "inert" metal complexes (with dissociation rate constants <10(-6) s(-1)). The experimental results were compared with the predictions of a computer-based equilibrium speciation model, the Windermere humic aqueous model (WHAM) V. Cascade ultrafiltration coupled with kinetic speciation of the metal species in each molecular weight cut-off (MWCO) fraction provided a more comprehensive picture and insight into the physical and the chemical characteristics of the metal species than either ultrafiltration or measurement of dissociation kinetics alone.

2.
Environ Sci Technol ; 38(19): 4979-86, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15506189

RESUMO

Freshwaters are recognized as dynamic systems that may be far-removed from equilibrium. A kinetic approach using the competing ligand exchange method with Chelex 100 as the competing ligand and inductively coupled plasmamass spectrometry to measure the dissociation kinetics was used to investigate the chemical speciation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) in model solutions of a well-characterized fulvic acid (Laurentian fulvic acid) and a freshwater sample collected from the Grand River (Ontario, Canada). The kinetic distribution of the metal species were quantitatively characterized by their first-order dissociation rate constants. This kinetic speciation approach has the advantage of providing an objective method for estimating the dissociation rate constants without any a priori assumptions about the number of kinetically distinguishable components or the shape of the distribution. Three factors were found to influence the kinetics of trace metal competition in the freshwater environment: (i) metal-to-ligand ratio, (ii) ionic potential (z2/r), and (iii) ligand field stabilization energy. The results illustrate the importance of considering the valence-shell electron configuration in predicting the kinetics of trace metal competition in the freshwater environment. The markedly slow dissociation kinetics of Ni(II) and Cu(II) species suggest that the usual equilibrium assumption for freshwaters may not be valid. This study has demonstrated the ability of the kinetic model to correctly predict the relative rates of trace metal reactions, indicating that the kinetic model provides a chemically significant description of the kinetic processes in natural waters.


Assuntos
Metais Pesados/análise , Metais Pesados/química , Modelos Teóricos , Poluentes da Água/análise , Cinética , Ligantes , Solubilidade , Água/química
3.
Anal Bioanal Chem ; 380(4): 683-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15452677

RESUMO

This paper describes a method for speciation of Hg associated with airborne particulate matter. This method uses a mini-sampler for sample collection and analysis, thermal desorption for separating Hg species, and inductively coupled plasma mass spectrometry (ICP-MS) for identification and quantification of Hg. Coal fly ash spiked with different Hg compounds (e.g. Hg0, HgCl2, HgO, and HgS) was used for qualitative calibration. A standard reference material with a certified value for Hg concentration was used to evaluate the method. When the temperature of the furnace was programmed at a linear rate of increase of 50 degrees min(-1), different Hg compounds could clearly be separated. Three airborne particulate matter samples were collected in parallel in Toronto, ON, Canada and analyzed using this method. Reproducible results were obtained and Hg0, HgCl2, HgO, and HgS species from these samples were detected.

4.
Environ Sci Technol ; 37(1): 68-74, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12542292

RESUMO

The kinetic speciation of Co(II), Ni(II), Cu(II), and Zn(II) in model solutions of a well-characterized fulvic acid (Laurentian fulvic acid), freshwater samples from the Rideau River (Ottawa, Ontario), and freshwater samples from the Sudbury (Ontario) area were investigated by the competing ligand exchange method using Chelex 100 as the competing ligand and by inductively coupled plasma-mass spectrometry to measure the dissociation kinetics. The metal species were quantitatively characterized by the rate coefficient for the first-order dissociation of metal complex to free metal ion. This technique can be applied to almost all elements and represents an important advance in our ability to investigate the kinetic availability of metal species in the freshwater environment. The order of the lability of the metal complexes, Co(II) > Ni(II) > Cu(II) < Zn(II), follows the reverse order of the ligand field stabilization energy with the exception of Cu(II); the behavior of Cu(II) is also due to the Jahn-Teller effect, which shortens the equatorial bonds and lengthens the axial bonds of a tetragonally distorted Cu(II)-L6 complex. This study has demonstrated a relationship between the lability of metal-DOM complexes of the 3d transition metals in freshwaters and their d electron configuration. This is the first time that the importance of the d electron configuration on the lability of metal complexes in the freshwater environment has been demonstrated. The slow complexation kinetics of both Ni(II) and Cu(II) suggestthatthe usual equilibrium assumption for freshwaters may be invalid.


Assuntos
Metais Pesados/química , Poluentes da Água/análise , Disponibilidade Biológica , Cinética , Espectrometria de Massas , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...