Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0283304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930680

RESUMO

INTRODUCTION: Extracorporeal blood purification systems represent a promising alternative for treatment of blood stream infections with multiresistant bacteria. OBJECTIVES: The aim of this study was to analyse the binding activity of S. aureus to Seraph affinity filters based on heparin coated beads and to identify effectors influencing this binding activity. RESULTS: To test the binding activity, we used gfp-expressing S. aureus Newman strains inoculated either in 0.9% NaCl or in blood plasma and determined the number of unbound bacteria by FACS analyses after passing through Seraph affinity filters. The binding activity of S. aureus was clearly impaired in human plasma: while a percent removal of 42% was observed in 0.9% NaCl (p-value 0.0472) using Seraph mini columns, a percent removal of only 10% was achieved in human plasma (p-value 0.0934). The different composition of surface proteins in S. aureus caused by the loss of SarA, SigB, Lgt, and SaeS had no significant influence on its binding activity. In a clinically relevant approach using the Seraph® 100 Microbind® Affinity Filter and 1000 ml of human blood plasma from four different donors, the duration of treatment was shown to have a critical effect on the rate of bacterial reduction. Within the first four hours, the number of bacteria decreased continuously and the reduction in bacteria reached statistical significance after two hours of treatment (percentage reduction 64%, p-value 0.01165). The final reduction after four hours of treatment was close to 90% and is dependent on donor. The capacity of Seraph® 100 for S. aureus in human plasma was approximately 5 x 108 cells. CONCLUSIONS: The Seraph affinity filter, based on heparin-coated beads, is a highly efficient method for reducing S. aureus in human blood plasma, with efficiency dependent on blood plasma composition and treatment duration.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Duração da Terapia , Proteínas de Membrana/metabolismo , Solução Salina/farmacologia , Bactérias , Heparina/farmacologia
2.
mSystems ; 8(2): e0113022, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786632

RESUMO

Bacteria either duplicate their chromosome once per cell division or a new round of replication is initiated before the cells divide, thus cell cycles overlap. Here, we show that the opportunistic pathogen Pseudomonas aeruginosa switches from fast growth with overlapping cell cycles to sustained slow growth with only one replication round per cell division when cultivated under standard laboratory conditions. The transition was characterized by fast-paced, sequential changes in transcriptional activity along the ori-ter axis of the chromosome reflecting adaptation to the metabolic needs during both growth phases. Quorum sensing (QS) activity was highest at the onset of the slow growth phase with non-overlapping cell cycles. RNA sequencing of subpopulations of these cultures sorted based on their DNA content, revealed a strong gene dosage effect as well as specific expression patterns for replicating and nonreplicating cells. Expression of flagella and mexE, involved in multidrug efflux was restricted to cells that did not replicate, while those that did showed a high activity of the cell division locus and recombination genes. A possible role of QS in the formation of these subpopulations upon switching to non-overlapping cell cycles could be a subject of further research. IMPORTANCE The coordination of gene expression with the cell cycle has so far been studied only in a few bacteria, the bottleneck being the need for synchronized cultures. Here, we determined replication-associated effects on transcription by comparing Pseudomonas aeruginosa cultures that differ in their growth mode and number of replicating chromosomes. We further show that cell cycle-specific gene regulation can be principally identified by RNA sequencing of subpopulations from cultures that replicate only once per cell division and that are sorted according to their DNA content. Our approach opens the possibility to study asynchronously growing bacteria from a wide phylogenetic range and thereby enhance our understanding of the evolution of cell cycle control on the transcriptional level.


Assuntos
Pseudomonas aeruginosa , Transcriptoma , Pseudomonas aeruginosa/genética , Filogenia , Divisão Celular/genética , DNA/metabolismo
3.
Angew Chem Int Ed Engl ; 60(33): 17989-17997, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097810

RESUMO

In order to render potent, but toxic antibiotics more selective, we have explored a novel conjugation strategy that includes drug accumulation followed by infection-triggered release of the drug. Bacterial targeting was achieved using a modified fragment of the human antimicrobial peptide ubiquicidin, as demonstrated by fluorophore-tagged variants. To limit the release of the effector colistin only to infection-related situations, we introduced a linker that was cleaved by neutrophil elastase (NE), an enzyme secreted by neutrophil granulocytes at infection sites. The linker carried an optimized sequence of amino acids that was required to assure sufficient cleavage efficiency. The antibacterial activity of five regioisomeric conjugates prepared by total synthesis was masked, but was released upon exposure to recombinant NE when the linker was attached to amino acids at the 1- or the 3-position of colistin. A proof-of-concept was achieved in co-cultures of primary human neutrophils and Escherichia coli that induced the secretion of NE, the release of free colistin, and an antibacterial efficacy that was equal to that of free colistin.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Colistina/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Células Cultivadas , Técnicas de Cocultura , Colistina/síntese química , Colistina/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular
4.
Eur J Immunol ; 48(9): 1456-1469, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29999523

RESUMO

NK cells lacking CD56 (CD56neg ) were first identified in chronic HIV-1 infection. However, CD56neg NK cells also exist in healthy individuals, albeit in significantly lower numbers. Here, we provide an extensive proteomic characterisation of human CD56neg peripheral blood NK cells of healthy donors and compare them to their CD56dim and CD56bright counterparts. Unbiased large-scale surface receptor profiling clustered CD56neg cells as part of the main NK cell compartment and indicated an overall CD56dim -like phenotype. Total proteome analyses of CD56neg NK cells further confirmed their similarity with CD56dim NK cells, and revealed a complete cytolytic inventory with high levels of perforin and granzyme H and M. In the present study, twelve proteins discriminated CD56neg NK cells from CD56dim NK cells with nine up-regulated and three down-regulated proteins in the CD56neg NK cell population. Those proteins were functionally related to lytic granule composition and transport, interaction with the extracellular matrix, DNA transcription or repair, and proliferation. Corroborating these results, CD56neg NK cells showed modest cytotoxicity, degranulation, and IFN-É£ secretion as compared to CD56dim NK cells. In conclusion, CD56neg NK cells constitute functionally competent cells sharing many features of bona fide CD56dim NK cells in healthy individuals, but with some distinct characteristics.


Assuntos
Antígeno CD56/genética , Células Matadoras Naturais/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Degranulação Celular/genética , Degranulação Celular/imunologia , Proliferação de Células/genética , Células Cultivadas , Reparo do DNA/genética , Glicosaminoglicanos/metabolismo , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Perforina/metabolismo , Proteoma/análise
5.
Eur J Immunol ; 47(12): 2043-2058, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28833060

RESUMO

Regulatory T (Treg) cells require T-cell receptor (TCR) signalling to exert their immunosuppressive activity, but the precise organization of the TCR signalling network compared to conventional T (Tconv) cells remains elusive. By using accurate mass spectrometry and multi-epitope ligand cartography (MELC) we characterized TCR signalling and recruitment of TCR signalling components to the immunological synapse (IS) in Treg cells and Tconv cells. With the exception of Themis which we detected in lower amounts in Treg cells, other major TCR signalling components were found equally abundant, however, their phosphorylation-status notably discriminates Treg cells from Tconv cells. Overall, this study identified 121 Treg cell-specific phosphorylations. Short-term triggering of T cell subsets via CD3 and CD28 widely harmonized these variations with the exception of eleven TCR signalling components that mainly regulate cytoskeleton dynamics and molecular transport. Accordingly, conjugation with B cells indeed caused variant cellular morphology and revealed a Treg cell-specific recruitment of TCR signalling components such as PKCθ, PLCγ1 and ZAP70 as well as B cell-derived CD86 into the IS. Together, results from this study support the existence of a Treg cell-specific IS and suggest Treg cell-specific cytoskeleton dynamics as a novel determinant for the unique functional properties of Treg cells.


Assuntos
Sinapses Imunológicas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Feminino , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Fosforilação , Proteoma/imunologia , Proteoma/metabolismo , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Proteína-Tirosina Quinase ZAP-70/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
6.
ISME J ; 7(12): 2274-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23823498

RESUMO

Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, is characterized by a pronounced pleomorphism. Cell shapes range from variable-sized ovoid rods to long filaments with a high copy number of chromosomes. Time-lapse microscopy shows cells dividing either by binary fission or by budding from the cell poles. Here we demonstrate that this morphological heterogeneity is induced by quorum sensing (QS). D. shibae utilizes three acylated homoserine lactone (AHL) synthases (luxI1-3) to produce AHLs with unsaturated C18 side chains. A ΔluxI1-knockout strain completely lacking AHL biosynthesis was uniform in morphology and divided by binary fission only. Transcriptome analysis revealed that expression of genes responsible for control of cell division was reduced in this strain, providing the link between QS and the observed phenotype. In addition, flagellar biosynthesis and type IV secretion system (T4SS) were downregulated. The wild-type phenotype and gene expression could be restored through addition of synthetic C18-AHLs. Their effectiveness was dependent on the number of double bonds in the acyl side chain and the regulated trait. The wild-type expression level of T4SS genes was fully restored even by an AHL with a saturated C18 side chain that has not been detected in D. shibae. QS induces phenotypic individualization of D. shibae cells rather than coordinating the population. This strategy might be beneficial in unpredictably changing environments, for example, during algal blooms when resource competition and grazing exert fluctuating selective pressures. A specific response towards non-native AHLs might provide D. shibae with the capacity for complex interspecies communication.


Assuntos
Percepção de Quorum/fisiologia , Rhodobacteraceae/citologia , Rhodobacteraceae/fisiologia , Acil-Butirolactonas/metabolismo , Divisão Celular/fisiologia , Técnicas de Inativação de Genes , Teste de Complementação Genética , Mutação , Percepção de Quorum/genética , Rhodobacteraceae/genética , Rhodobacteraceae/ultraestrutura
7.
Mol Cell Proteomics ; 12(5): 1099-114, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23315794

RESUMO

The recent Natural Killer (NK) cell maturation model postulates that CD34(+) hematopoietic stem cells (HSC) first develop into CD56(bright) NK cells, then into CD56(dim)CD57(-) and finally into terminally maturated CD56(dim)CD57(+). The molecular mechanisms of human NK cell differentiation and maturation however are incompletely characterized. Here we present a proteome analysis of distinct developmental stages of human primary NK cells, isolated from healthy human blood donors. Peptide sequencing was used to comparatively analyze CD56(bright) NK cells versus CD56(dim) NK cells and CD56(dim)CD57(-) NK cells versus CD56(dim)CD57(+) NK cells and revealed distinct protein signatures for all of these subsets. Quantitative data for about 3400 proteins were obtained and support the current differentiation model. Furthermore, 11 donor-independently, but developmental stage specifically regulated proteins so far undescribed in NK cells were revealed, which may contribute to NK cell development and may elucidate a molecular source for NK cell effector functions. Among those proteins, S100A4 (Calvasculin) and S100A6 (Calcyclin) were selected to study their dynamic subcellular localization. Upon activation of human primary NK cells, both proteins are recruited into the immune synapse (NKIS), where they colocalize with myosin IIa.


Assuntos
Células Matadoras Naturais/fisiologia , Proteoma/metabolismo , Sequência de Aminoácidos , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Separação Celular , Células Cultivadas , Humanos , Sinapses Imunológicas/metabolismo , Ativação Linfocitária , Anotação de Sequência Molecular , Dados de Sequência Molecular , Miosina não Muscular Tipo IIA/metabolismo , Transporte Proteico , Proteoma/química , Proteína A6 Ligante de Cálcio S100 , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/química , Proteínas S100/metabolismo , Transdução de Sinais
8.
Microb Ecol ; 63(2): 383-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21845446

RESUMO

The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Impressões Digitais de DNA/métodos , Água Potável/microbiologia , Bactérias/classificação , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Citometria de Fluxo , Viabilidade Microbiana , Dados de Sequência Molecular , Compostos Orgânicos/química , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Propídio/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
9.
J Vis Exp ; (70)2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23287741

RESUMO

Throughout the last years, the contribution of alveolar type II epithelial cells (AECII) to various aspects of immune regulation in the lung has been increasingly recognized. AECII have been shown to participate in cytokine production in inflamed airways and to even act as antigen-presenting cells in both infection and T-cell mediated autoimmunity (1-8). Therefore, they are especially interesting also in clinical contexts such as airway hyper-reactivity to foreign and self-antigens as well as infections that directly or indirectly target AECII. However, our understanding of the detailed immunologic functions served by alveolar type II epithelial cells in the healthy lung as well as in inflammation remains fragmentary. Many studies regarding AECII function are performed using mouse or human alveolar epithelial cell lines (9-12). Working with cell lines certainly offers a range of benefits, such as the availability of large numbers of cells for extensive analyses. However, we believe the use of primary murine AECII allows a better understanding of the role of this cell type in complex processes like infection or autoimmune inflammation. Primary murine AECII can be isolated directly from animals suffering from such respiratory conditions, meaning they have been subject to all additional extrinsic factors playing a role in the analyzed setting. As an example, viable AECII can be isolated from mice intranasally infected with influenza A virus, which primarily targets these cells for replication (13). Importantly, through ex vivo infection of AECII isolated from healthy mice, studies of the cellular responses mounted upon infection can be further extended. Our protocol for the isolation of primary murine AECII is based on enzymatic digestion of the mouse lung followed by labeling of the resulting cell suspension with antibodies specific for CD11c, CD11b, F4/80, CD19, CD45 and CD16/CD32. Granular AECII are then identified as the unlabeled and sideward scatter high (SSC(high)) cell population and are separated by fluorescence activated cell sorting (3). In comparison to alternative methods of isolating primary epithelial cells from mouse lungs, our protocol for flow cytometric isolation of AECII by negative selection yields untouched, highly viable and pure AECII in relatively short time. Additionally, and in contrast to conventional methods of isolation by panning and depletion of lymphocytes via binding of antibody-coupled magnetic beads (14, 15), flow cytometric cell-sorting allows discrimination by means of cell size and granularity. Given that instrumentation for flow cytometric cell sorting is available, the described procedure can be applied at relatively low costs. Next to standard antibodies and enzymes for lung disintegration, no additional reagents such as magnetic beads are required. The isolated cells are suitable for a wide range of functional and molecular studies, which include in vitro culture and T-cell stimulation assays as well as transcriptome, proteome or secretome analyses (3, 4).


Assuntos
Células Epiteliais/citologia , Citometria de Fluxo/métodos , Alvéolos Pulmonares/citologia , Animais , Camundongos
10.
J Bacteriol ; 193(8): 1863-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317319

RESUMO

Competence-stimulating-peptide (CSP)-mediated competence development in Streptococcus mutans is a transient and biphasic process, since only a subpopulation induces the expression of ComX in the presence of CSP, and the activation of the DNA uptake machinery in this fraction shuts down ~3 to 4 h postinduction. Here, we combine for the first time, to our knowledge, the bacterial flow-cytometric sorting of cells and subpopulation-specific transcriptome analysis of both the competent and noncompetent fraction of CSP-treated S. mutans cells. Sorting was guided by a ComX-green fluorescent protein (ComX-GFP) reporter, and the transcriptome analysis demonstrated the successful combination of both methods, because a strong enrichment of transcripts for comX and its downstream genes was achieved. Three two-component systems were expressed in the competent fraction, and among them was ComDE. Moreover, the recently identified regulator system ComR/S was expressed exclusively in the competent fraction. In contrast, the expression of bacteriocin-related genes was at the same level in all cells. GFP reporter strains for ComE and CipB (mutacin V) confirmed this expression pattern on the single-cell level. Fluorescence microscopy revealed that some ComX-expressing cells committed autolysis in an early stage of competence initiation. In viable ComX-expressing cells, the uptake of DNA could be shown on the single-cell level. This study demonstrates that all cells in the population respond to CSP through the activation of bacteriocin-related genes. Some of these cells start to activate ComX expression but then segregate into two subpopulations, one becoming competent and another one that lyses, resulting in intrapopulation diversity.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Streptococcus mutans/classificação , Streptococcus mutans/genética , Fusão Gênica Artificial , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
11.
J Immunol ; 183(4): 2312-20, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19620304

RESUMO

IL-10 plays a central role in restraining the vigor of inflammatory responses, but the critical cellular sources of this counter-regulatory cytokine remain speculative in many disease models. Using a novel IL-10 transcriptional reporter mouse, we found an unexpected predominance of B cells (including plasma cells) among IL-10-expressing cells in peripheral lymphoid tissues at baseline and during diverse models of in vivo immunological challenge. Use of a novel B cell-specific IL-10 knockout mouse revealed that B cell-derived IL-10 nonredundantly decreases virus-specific CD8(+) T cell responses and plasma cell expansion during murine cytomegalovirus infection and modestly restrains immune activation after challenge with foreign Abs to IgD. In contrast, no role for B cell-derived IL-10 was evident during endotoxemia; however, although B cells dominated lymphoid tissue IL-10 production in this model, myeloid cells were dominant in blood and liver. These data suggest that B cells are an underappreciated source of counter-regulatory IL-10 production in lymphoid tissues, provide a clear rationale for testing the biological role of B cell-derived IL-10 in infectious and inflammatory disease, and underscore the utility of cell type-specific knockouts for mechanistic limning of immune counter-regulation.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Interleucina-10/fisiologia , Animais , Subpopulações de Linfócitos B/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Modelos Animais de Doenças , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Mediadores da Inflamação/fisiologia , Interleucina-10/biossíntese , Interleucina-10/deficiência , Interleucina-10/genética , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Tecido Linfoide/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Muromegalovirus/imunologia , Células NIH 3T3
12.
Respir Res ; 8: 47, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17610738

RESUMO

BACKGROUND: Although the contribution of alveolar type II epithelial cell (AEC II) activities in various aspects of respiratory immune regulation has become increasingly appreciated, our understanding of the contribution of AEC II transcriptosome in immunopathologic lung injury remains poorly understood. We have previously established a mouse model for chronic T cell-mediated pulmonary inflammation in which influenza hemagglutinin (HA) is expressed as a transgene in AEC II, in mice expressing a transgenic T cell receptor specific for a class II-restricted epitope of HA. Pulmonary inflammation in these mice occurs as a result of CD4+ T cell recognition of alveolar antigen. This model was utilized to assess the profile of inflammatory mediators expressed by alveolar epithelial target cells triggered by antigen-specific recognition in CD4+ T cell-mediated lung inflammation. METHODS: We established a method that allows the flow cytometric negative selection and isolation of primary AEC II of high viability and purity. Genome wide transcriptional profiling was performed on mRNA isolated from AEC II isolated from healthy mice and from mice with acute and chronic CD4+ T cell-mediated pulmonary inflammation. RESULTS: T cell-mediated inflammation was associated with expression of a broad array of cytokine and chemokine genes by AEC II cell, indicating a potential contribution of epithelial-derived chemoattractants to the inflammatory cell parenchymal infiltration. Morphologically, there was an increase in the size of activated epithelial cells, and on the molecular level, comparative transcriptome analyses of AEC II from inflamed versus normal lungs provide a detailed characterization of the specific inflammatory genes expressed in AEC II induced in the context of CD4+ T cell-mediated pneumonitis. CONCLUSION: An important contribution of AEC II gene expression to the orchestration and regulation of interstitial pneumonitis is suggested by the panoply of inflammatory genes expressed by this cell population, and this may provide insight into the molecular pathogenesis of pulmonary inflammatory states. CD4+ T cell recognition of antigen presented by AEC II cells appears to be a potent trigger for activation of the alveolar cell inflammatory transcriptosome.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunofenotipagem , Pulmão/patologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Mucosa Respiratória/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo
13.
J Biol Chem ; 282(33): 24320-8, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17591768

RESUMO

Serum response factor (SRF), is a crucial transcription factor for murine embryonic development and for the function of muscle cells and neurons. Gene expression data show that SRF and its transcriptional cofactors are also expressed in lymphocyte precursors and mature lymphocytes. However, the role of SRF in lymphocyte development has not been addressed in vivo so far, attributed in part to early embryonic lethality of conventional Srf-null mice. To determine the in vivo role of SRF in developing lymphocytes, we specifically inactivated the murine Srf gene during T or B cell development using lymphocyte-specific Cre transgenic mouse lines. T cell-specific Srf deletion led to a severe block in thymocyte development at the transition from CD4/CD8 double to single positive stage. The few residual T cells detectable in the periphery retained at least one functional Srf allele, thereby demonstrating the importance of SRF in T cell development. In contrast, deletion of Srf in developing B cells did not interfere with the growth and survival of B cells in general, yet led to a complete loss of marginal zone B cells and a marked reduction of the CD5+ B cell subset. Our study also revealed a contribution of SRF to the expression of the surface molecules IgM, CD19, and the chemokine receptor 4 in B lymphocytes. We conclude that SRF fulfills essential and distinct functions in the differentiation of different types of lymphocytes.


Assuntos
Linfócitos/citologia , Fator de Resposta Sérica/fisiologia , Animais , Linfócitos B/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Subpopulações de Linfócitos/citologia , Camundongos , Camundongos Transgênicos , Fator de Resposta Sérica/deficiência , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...