Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400073, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856824

RESUMO

The multi-10.000 tons scale manufactured chemical ε-caprolactone attracts high industrial interest due to its favorable biodegradability properties. However, besides being of petrochemical origin yet, its industrial production has a conceptual limitation that is the difficult extraction of this highly water-soluble monomer from the water phase resulting from the aqueous solution of H2O2 applied as reagent. In this contribution, we report a chemoenzymatic cascade starting from bio-based phenol, which makes use of O2 instead of H2O2 and runs in pure organic medium, thus requiring only simply decantation and distillation as work-up. In a first step, phenol is hydrogenated quantitatively to cyclohexanol under solvent-free conditions with a Ru-catalyst. After simple removal of the heterogenous catalyst, cyclohexanol is converted to ε-caprolactone in a biocatalytic double oxidation with very high yields just requiring O2 as reagent. This biocatalytic process proceeds in pure organic medium, thus avoiding tedious extraction to isolate the highly water-soluble ε-caprolactone and enabling a dramatically simplified work-up by only centrifugal separation of lyophilized whole cells and solvent removal. This oxidation is accomplished using a tailor-made recombinant whole-cell catalyst containing an alcohol dehydrogenase and a cyclohexanone monooxygenase mutant.

2.
Org Biomol Chem ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874945

RESUMO

Besides its native biological function as a plant hormone, cis-(+)-12-oxo-phytodienoic acid (12-OPDA) serves as a metabolite for the cellular formation of (-)-jasmonic acid and has also been shown to have an influence on mammalian cells. In order to make this biologically active, but at the same time very expensive natural product 12-OPDA broadly accessible for further biological and medicinal research, we developed an efficient bioprocess based on the utilization of a tailor-made whole-cell catalyst by following the principles of its biosynthesis in nature. After process optimization, the three-step one-pot synthesis of 12-OPDA starting from readily accessible α-linolenic acid could be conducted at appropriate technically relevant substrate loadings in the range of 5-20 g L-1. The desired 12-OPDA was obtained with an excellent conversion efficiency, and by means of the developed, efficient downstream-processing, this emulsifying as well as stereochemically labile biosynthetic metabolite 12-OPDA was then obtained with very high chemical purity (>99%) and enantio- and diastereomeric excess (>99% ee, 96% de) as well as negligible side-product formation (<1%). With respect to future technical applications, we also demonstrated the scalability of the production of the whole cell-biocatalyst in a high cell-density fermentation process.

3.
J Org Chem ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836638

RESUMO

This contribution describes the development of chemoenzymatic one-pot processes, which combine an oxidative rearrangement and a biotransformation catalyzed by an imine reductase (IRED), for the synthesis of highly enantiomerically enriched secondary amines, such as an aryl-substituted pyrrolidine and a benzazepine. The benefits of this chemoenzymatic one-pot approach include high overall conversions (up to >99%), high enantiomeric excesses (up to >99% ee), and a straightforward synthetic approach toward secondary amines without the need to isolate the formed intermediate. For the initial chemical reaction, namely, the oxidative rearrangement, PhI(OAc)2 in methanol is used as a non-natural reagent, whereas the enzymatic step requires only stoichiometric amounts of d-glucose along with catalytic amounts of IRED, glucose dehydrogenase (GDH), and the cofactor NADPH. This methodology, demonstrating the compatibility of a "classic" organic synthesis using a non-natural, highly reactive reagent and a subsequent biocatalytic step, can be applied for different amines as substrates, thus making this concept a versatile tool in synthetic organic chemistry in general and for enantioselective synthesis of heterocyclic secondary amines in particular.

4.
Chemistry ; : e202304028, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580616

RESUMO

The synthesis of enantiomerically pure tertiary alcohols is an important issue in organic synthesis of a range of pharmaceuticals including molecules such as the anti-HIV drug Efavirenz. A conceptually elegant approach to such enantiomers is the dynamic kinetic resolution of racemic tertiary alcohols, which, however, requires efficient racemization strategies. The racemization of tertiary alcohols is particularly challenging due to various side reactions that can occur because of their high tendency for elimination reactions. In the last few years, several complementary catalytic concepts for racemization of tertiary alcohols have been developed, characterized by efficient racemization and suppression of unwanted side-reactions. Besides resins bearing sulfonic acid moieties and a combination of boronic acid and oxalic acid as heterogeneous and homogeneous Brønsted-acids, respectively, immobilized oxovanadium and piperidine turned out to be useful catalysts. The latter two catalysts, which have already been applied to different types of substrates, also have proven good compatibility with lipase, thus leading to the first two examples of chemoenzymatic dynamic kinetic resolution of tertiary alcohols. In this review, the difficulties in racemizing tertiary alcohols are specifically described, and the recently developed complementary concepts to overcome these hurdles are summarized.

5.
Chembiochem ; : e202400203, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602845

RESUMO

This study explores a combination of the concept of enantioselective enzymatic synthesis of ß-chiral amines through transamination with in situ product crystallization (ISPC) to overcome product inhibition. Using 2-phenylpropanal as a readily available and easily racemizing substrate of choice, (R)-ß-methylphenethylamine ((R)-2-phenylpropan-1-amine) concentrations of up to 250 mM and enantiomeric excesses of up to 99 % are achieved when using a commercially available transaminase from Ruegeria pomeroyi in a fed-batch based dynamic kinetic resolution reaction on preparative scale. The source of substrate decomposition during the reaction is also investigated and the resulting unwanted byproduct formation is successfully reduced to insignificant levels.

6.
Angew Chem Int Ed Engl ; : e202401989, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628134

RESUMO

While simultaneously proceeding reactions are among the most fascinating features of biosynthesis, this concept of tandem processes also offers high potential in the chemical industry in terms of less waste production and improved process efficiency and sustainability. Although examples of one-pot chemoenzymatic syntheses exist, the combination of completely different reaction types is rare. Herein, we demonstrate that extreme "antipodes" of the "worlds of catalysis", such as syngas-based high-pressure hydroformylation and biocatalyzed reduction, can be combined within a tandem-type one-pot process in water. No significant deactivation was found for either the biocatalyst or the chemocatalyst. A proof-of-concept for the one-pot process starting from 1-octene was established with >99 % conversion and 80 % isolated yield of the desired alcohol isomers. All necessary components for hydroformylation and biocatalysis were added to the reactor from the beginning. This concept has been extended to the enantioselective synthesis of chiral products by conducting the hydroformylation of styrene and an enzymatic dynamic kinetic resolution in a tandem mode, leading to an excellent conversion of >99 % and an enantiomeric ratio of 91 : 9 for (S)-2-phenylpropanol. The overall process runs in water under mild and energy-saving conditions, without any need for intermediate isolation.

7.
Chembiochem ; : e202400082, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670922

RESUMO

Chiral tertiary alcohols are important organic compounds in science as well as in industry. However, their preparation in enantiomerically pure form is still a challenge due to their complex structure and steric hindrances compared with primary and secondary alcohols, so kinetic resolution could be an attractive approach.  Lipase A from Candida antarctica (CAL-A) has been shown to catalyze the enantioselective esterification of various tertiary alcohols with excellent enantioselectivity but low activity. Here we report a mutagenesis study by rational design to improve CAL-A activity against tertiary alcohols. Single mutants of CAL-A were selected, expressed, immobilized and screened for esterification of the tertiary alcohol 1,2,3,4-tetrahydronaphthalene-1-ol. A double mutant V278S+S429G showed a 1.5-fold higher reaction rate than that of the wild type CAL-A, while maintaining excellent enantioselectivity.

8.
Small ; : e2310665, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386292

RESUMO

The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2 SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2 SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example.

9.
Angew Chem Int Ed Engl ; 63(24): e202316760, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38217774

RESUMO

Combining chemo- and biocatalysis enables the design of novel economic and sustainable one-pot processes for the preparation of industrial chemicals, preferably proceeding in water. While a range of proofs-of-concept for the compatibility of such catalysts from these two different "worlds of catalysis" have recently been demonstrated, merging noncompatible chemo- and biocatalysts for joint applications within one reactor remained a challenge. A conceptual solution is compartmentalization of the catalytic moieties by heterogenization of critical catalyst components, thus "shielding" them from the complementary noncompatible catalyst, substrate or reagent. Exemplified for a one-pot process consisting of a metal-catalyzed Wacker oxidation and enzymatic reduction as noncompatible individual reactions steps, we demonstrate that making use of 3D printing of heterogeneous materials containing Cu as a critical metal component can overcome such incompatibility hurdles. The application of a 3D-printed Cu-ceramic device as metal catalyst component allows an efficient combination with the enzyme and the desired two-step transformation of styrene into the chiral alcohol product with high overall conversion and excellent enantioselectivity. This compartmentalization concept based on 3D printing of heterogenized metal catalysts represents a scalable methodology and opens up numerous perspectives to be used as a general tool also for other related chemoenzymatic research challenges.

10.
J Biotechnol ; 367: 81-88, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907356

RESUMO

Aldoxime dehydratases (Oxds) are a unique class of enzymes, which catalyzes the dehydration of aldoximes to nitriles in an aqueous environment. Recently, they gained attention as a catalyst for a green and cyanide-free alternative to established nitrile syntheses, which often require the use of toxic cyanides and harsh reaction conditions. Up to now only thirteen aldoxime dehydratases have been discovered and biochemically characterized. This raised the interest for identifying further Oxds with, e.g., complementary properties in terms of substrate scope. In this study, 16 novel genes, presumably encoding aldoxime dehydratases, were selected by using a commercially available 3DM database based on OxdB, an Oxd from Bacillus sp. OxB-1. Out of 16 proteins, six enzymes with aldoxime dehydratases activity were identified, which differ in their substrate scope and activity. While some novel Oxds showed better performance for aliphatic substrate such as n-octanaloxime compared to the well characterized OxdRE from Rhodococcus sp. N-771, some showed activity for aromatic aldoximes, leading to an overall high usability of these enzymes in organic chemistry. The applicability for organic synthesis was underlined by converting 100 mM n-octanaloxime at a 10 mL scale within 5 h with the novel aldoxime dehydratase OxdHR as whole-cell catalyst (33 mgbww/mL).


Assuntos
Bacillus , Hidroliases , Hidroliases/genética , Hidroliases/metabolismo , Oximas/metabolismo , Bacillus/metabolismo , Nitrilas/metabolismo
11.
J Org Chem ; 88(12): 7674-7683, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36701491

RESUMO

We developed an enantioselective synthetic method of constructing a seven-membered ring-fused indole skeleton with contiguous stereocenters for the synthesis of dragmacidin E. Introduction of chirality at the benzylic position was achieved by Ir-catalyzed asymmetric hydrogenation. After construction of the tricyclic molecular framework using Pd-catalyzed cascade cyclization, the tetrasubstituted carbon center was created using the Ag nitrene-mediated C-H amination reaction. The developed method provided access to the functionalized seven-membered ring-fused indole skeleton with a hydroxymethyl branch in the tetrasubstituted carbon.


Assuntos
Carbono , Alcaloides Indólicos , Estereoisomerismo , Catálise , Esqueleto
12.
Chem Rev ; 123(9): 5262-5296, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36473100

RESUMO

Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.


Assuntos
Água , Biocatálise , Solventes , Catálise
13.
Chemistry ; 28(60): e202202437, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36089534

RESUMO

Natural lipases typically recognize enantiomers of alcohols based on the size differences of substituents near the carbinol moiety and selectively react with the R enantiomers of secondary alcohols. Therefore, lipase-catalyzed dynamic kinetic resolution (DKR) of racemic secondary alcohols produces only R enantiomers. We report herein a method for obtaining S enantiomers by DKR of secondary 3-(trialkylsilyl)propargyl alcohols by using a well-known R-selective Pseudomonas fluorescens lipase in combination with a racemization catalyst VMPS4, in which the silyl group reverses the size relationship of substituents near the carbinol moiety. We have already reported R-selective DKR of the corresponding propargyl alcohols without substituents on the ethynyl terminal carbon, and the presence of an easily removable silyl group has enabled us to produce both enantiomers of propargyl alcohols in high chemical yields and with high enantiomeric excess. In addition, immobilization of the lipase on Celite was found to be important for achieving a high efficiency of the DKR.


Assuntos
Terra de Diatomáceas , Metanol , Estereoisomerismo , Álcoois , Lipase/metabolismo , Cinética , Catálise , Carbono
14.
J Org Chem ; 87(17): 11369-11378, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35969670

RESUMO

In this work, an enantioselective biocatalytic synthesis of chiral thiomorpholines using imine reductases (IREDs) is described. As substrates, four prochiral and one chiral 3,6-dihydro-2H-1,4-thiazines were synthesized in a modified Asinger reaction and subsequently reduced using imine reductases as a biocatalyst, NADPH as a cofactor, and a glucose dehydrogenase (GDH)-glucose cofactor regeneration system. As a result, chiral thiomorpholines with a stereogenic center created in 3-position were obtained under mild process conditions with high conversions and excellent enantioselectivities of up to 99%. Furthermore, as a proof of concept, a sequential one-pot process combining both individual reaction steps was achieved.


Assuntos
Oxirredutases , Tiazinas , Iminas , Morfolinas , Estereoisomerismo
15.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624719

RESUMO

cis-(+)-12-Oxophytodienoic acid (OPDA) is a reactive oxylipin produced by catalytic oxygenation of polyunsaturated α-linolenic acid (18:3 (ω - 3)) in the chloroplast. Apart from its function as precursor for jasmonic acid synthesis, OPDA serves as a signaling molecule and regulator on its own, namely by tuning enzyme activities and altering expression of OPDA-responsive genes. A possible reaction mechanism is the covalent binding of OPDA to thiols via the addition to the C=C double bond of its α,ß-unsaturated carbonyl group in the cyclopentenone ring. The reactivity allows for covalent modification of accessible cysteinyl thiols in proteins. This work investigated the reaction of OPDA with selected chloroplast and cytosolic thioredoxins (TRX) and glutaredoxins (GRX) of Arabidopsis thaliana. OPDA reacted with TRX and GRX as detected by decreased m-PEG maleimide binding, consumption of OPDA, reduced ability for insulin reduction and inability to activate glyceraldehyde-3-phosphate dehydrogenase and regenerate glutathione peroxidase (GPXL8), and with lower efficiency, peroxiredoxin IIB (PRXIIB). OPDAylation of certain protein thiols occurs quickly and efficiently in vitro and is a potent post-translational modification in a stressful environment.

16.
Chem Pharm Bull (Tokyo) ; 70(5): 391-399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491196

RESUMO

The highly enantioselective lipase-catalyzed kinetic resolution (KR) of racemic C1-symmetric biaryl compounds including heterocyclic moieties, such as carbazole and dibenzofuran, has been achieved for the first time. This enzymatic esterification was accelerated by the addition of disodium carbonate while maintaining its high enantioselectivities, and was particularly effective for biaryls having N-substituted carbazole moieties. Furthermore, mesoporous silica-supported oxovanadium-catalyzed cross-dehydrogenative coupling of 3-hydroxycarbazole and 2-naphthol was followed by the lipase-catalyzed KR in one-pot to synthesize the optically active heterocyclic biaryl compounds with high optical purity.


Assuntos
Carbazóis , Lipase , Catálise , Cinética , Lipase/metabolismo , Estereoisomerismo
17.
J Am Chem Soc ; 144(17): 7531-7550, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389641

RESUMO

The chemistry of metal-organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.


Assuntos
Estruturas Metalorgânicas , Nanotecnologia , Catálise , Estruturas Metalorgânicas/química
18.
J Inorg Biochem ; 230: 111770, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272237

RESUMO

Aldoxime dehydratase (Oxd) is a heme enzyme that catalyzes aldoxime dehydration to the corresponding nitriles. Unlike many other heme enzymes, Oxd has a unique feature that the substrate binds directly to the heme. Therefore, it is thought that structural differences around the bound heme directly relate to differences in substrate selection. However sufficient structural information to discuss the substrate specificity has not been obtained. Oxd from Bacillus sp. OxB-1 (OxdB) shows unique substrate specificity and enantioselectivity compared to the Oxds whose crystal structures have already been reported. Here, we report the crystal structure of OxdB, which has not been reported previously. Although the crystallization of OxdB has been difficult, by adding a site-specific mutation to Glu85 located on the surface of the protein, we succeeded in crystallizing OxdB without reducing the enzyme activity. The catalytic triad essential for Oxd activity were structurally conserved in OxdB. In addition, the crystal structure of the Michaelis complex of OxdB and the diastereomerically pure substrate Z-2-(3-bromophenyl)-propanal oxime implied the importance of several hydrophobic residues for substrate specificity. Mutational analysis implicated Ala12 and Ala14 in the E/Z selectivity of bulky compounds. The N-terminal region of OxdB was shown to be shorter than those of Oxds from Pseudomonas chlororaphis and Rhodococcus sp. N-771, and have high flexibility. These structural differences possibly result in distinct preferences for aldoxime substrates based on factors such as substrate size.


Assuntos
Bacillus , Cristalização , Heme/química , Hidroliases , Oximas/química , Especificidade por Substrato
19.
ChemistryOpen ; 11(1): e202100230, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889532

RESUMO

The access towards chiral nitriles remains crucial in the synthesis of several pharmaceuticals. One approach is based on metal-catalyzed dehydration of chiral aldoximes, which are generated from chiral pool-derived aldehydes as substrates, and the use of a cheap and readily available nitrile as co-substrate and water acceptor. Dehydration of N-acyl α-amino aldoximes such as N-Boc-l-prolinal oxime catalyzed by copper(II) acetate provides access to the corresponding N-acyl α-amino nitriles, which are substructures of the pharmaceuticals Vildagliptin and Saxagliptin. In this work, a detailed investigation of the formation of the amide as a by-product at higher substrate loadings is performed. The amide formation depends on the electronic properties of the nitrile co-substrate. We could identify an acceptor nitrile which completely suppressed amide formation at high substrate loadings of 0.5 m even when being used with only 2 equivalents. In detail, utilization of trichloroacetonitrile as such an acceptor nitrile enabled the synthesis of N-Boc-cyanopyrrolidine in a high yield of 92 % and with full retention of the absolute configuration.


Assuntos
Cobre , Desidratação , Catálise , Humanos , Nitrilas , Oximas
20.
Sci Rep ; 11(1): 14316, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253740

RESUMO

Recently, the program INTMSAlign_HiSol for identifying aggregation hotspots in proteins only requiring secondary structure data was introduced. We explored the utility of this program further and applied it for engineering of the aldoxime dehydratase from Bacillus sp. OxB-1. Towards this end, the effect of inverting the hydropathy at selected positions of the amino acid sequence on the enzymatic activity was studied leading to 60% of our constructed variants, which showed improved activity. In part, this activity increase can be rationalised by an improved heme incorporation of the variants. For example, a single mutation gave a 1.8 fold increased enzymatic activity and 30% improved absolute heme incorporation.


Assuntos
Hidroliases/metabolismo , Engenharia de Proteínas/métodos , Bacillus/enzimologia , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Hidroliases/química , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...