Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(8): 1767-1777, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38804665

RESUMO

Pharmaceuticals have been classified as an environmental concern due to their increasing consumption globally and potential environmental impact. We examined the toxicity of sediment-associated diclofenac and citalopram administered as both single compounds and in a mixture to the sediment-living amphipod Corophium volutator. This laboratory-based study addressed the following research questions: (1) What is the toxicity of sediment-associated diclofenac and citalopram to C. volutator? (2) Can the mixture effect be described with either of the two mixture models: concentration addition (CA) or independent action (IA)? (3) What is the importance of the choice of (i) exposure measure (start concentration, time-weighted average [TWA], full exposure profile) and (ii) effect model (concentration-response vs. the toxicokinetic-toxicodynamic model general unified threshold model for survival in its reduced form [GUTS-RED]) for the derived effect concentration values? Diclofenac was more toxic than citalopram to C. volutator as a single compound (10-day exposure). Diclofenac exposure to C. volutator provided median lethal concentrations (LC50s) within the same range (11 µg g-1 dry wt sediment) using concentration-response based on TWA and both GUTS-RED models. However, concentration-response based on measured start concentrations provided an approximately 90% higher LC50 (21.6 ± 2.0 µg g-1 dry wt sediment). For citalopram, concentration-response parameters were similar regardless of model or concentration used (LC50 85-97 µg g-1 dry wt sediment), however, GUTS-RED with the assumption of individual tolerance resulted in a lower LC50 (64.9 [55.3-74.8] µg g-1 dry wt sediment). The mixture of diclofenac and citalopram followed the CA quite closely, whereas the result was synergistic when using the IA prediction. In summary, concentration-response based on TWA and GUTS-RED provided similar and reasonably good fits compared to the data set. The implications are that GUTS-RED will provide a more flexible model, which, in principle, can extend beyond the experimental period and make predictions based on variable exposure profiles (toxicity at different time frames and at different variable exposure scenarios) compared to concentration-response, which provides contaminant toxicity at one point in time. Environ Toxicol Chem 2024;43:1767-1777. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfípodes , Citalopram , Diclofenaco , Sedimentos Geológicos , Poluentes Químicos da Água , Anfípodes/efeitos dos fármacos , Animais , Sedimentos Geológicos/química , Diclofenaco/toxicidade , Poluentes Químicos da Água/toxicidade , Citalopram/toxicidade , Relação Dose-Resposta a Droga
2.
Environ Toxicol Chem ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983724

RESUMO

In recent years, the sediment compartment has gained more attention when performing toxicity tests, with a growing emphasis on gaining more ecological relevance in testing. Though many standard guidelines recommend using artificially formulated sediment, most sediment studies are using natural sediment collected in the field. Although the use of natural field-collected sediment contributes to more environmentally realistic exposure scenarios and higher well-being for sediment-dwelling organisms, it lowers comparability and reproducibility among studies as a result of, for example, differences in the base sediment depending on sampling site, background contamination, particle size distribution, or organic matter content. The aim of this methodology contribution is to present and discuss best practices related to collecting, handling, describing, and applying natural field-collected sediment in ecotoxicological testing. We propose six recommendations: (1) natural sediment should be collected at a well-studied site, historically and by laboratory analysis; (2) larger quantities of sediment should be collected and stored prior to initiation of an experiment to ensure a uniform sediment base; (3) any sediment used in ecotoxicological testing should be characterized, at the very least, for its water content, organic matter content, pH, and particle size distribution; (4) select spiking method, equilibration time, and experimental setup based on the properties of the contaminant and the research question; (5) include control-, treated similarly to the spiked sediment, and solvent control sediment when appropriate; and (6) quantify experimental exposure concentrations in the overlying water, porewater (if applicable), and bulk sediment at least at the beginning and the end of each experiment. Environ Toxicol Chem 2023;00:1-10. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

3.
Environ Sci Technol ; 57(8): 3218-3227, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791268

RESUMO

In the marine environment, discarded cigarette filters (CFs) deteriorate and leach filter-associated chemicals. The study aim was to assess the effects of smoked CFs (SCFs) and non-smoked CFs (NCFs) particles on individual life-history traits in the deposit-feeding polychaete Capitella teleta and extrapolate these to possible population-level effects. C. teleta was exposed to sediment-spiked particles of NCFs and SCFs at an environmentally realistic concentration (0.1 mg particles g-1 dw sed) and a 100-fold higher (10 mg particles g-1 dw sed) concentration. Experimental setup incorporated 11 individual endpoints and lasted approximately 6 months. There were significant effects on all endpoints, except from adult body volume and egestion rate, in worms exposed to 10 mg SCF particles g-1 dw sed. Although not statistically significant, there was ≥50% impact on time between reproductive events and number of eggs per female at 0.1 mg SCF particles g-1 dw sed. None of the endpoints was significantly affected by NCFs. Results suggest that SCFs are likely to affect individual life-history traits of C. teleta, whereas the population model suggests that these effects might not transform into population-level effects. The results further indicate that chemicals associated with CFs are the main driver causing the effects rather than the CF particles.


Assuntos
Poliquetos , Produtos do Tabaco , Poluentes Químicos da Água , Animais , Feminino , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Reprodução
4.
iScience ; 25(12): 105672, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36536674

RESUMO

Pharmaceutical pollution represents a rapidly growing threat to ecosystems worldwide. Drugs are now commonly detected in the tissues of wildlife and have the potential to alter the natural expression of behavior, though relatively little is known about how pharmaceuticals impact predator-prey interactions. We conducted parallel laboratory experiments using larval odonates (dragonfly and damselfly nymphs) to investigate the effects of exposure to two pharmaceuticals, cetirizine and citalopram, and their mixture on the outcomes of predator-prey interactions. We found that exposure to both compounds elevated dragonfly activity and impacted their predation success and efficiency in complex ways. While exposure to citalopram reduced predation efficiency, exposure to cetirizine showed varied effects, with predation success being enhanced in some contexts but impaired in others. Our findings underscore the importance of evaluating pharmaceutical effects under multiple contexts and indicate that these compounds can affect predator-prey outcomes at sublethal concentrations.

5.
Sci Total Environ ; 838(Pt 2): 155831, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568170

RESUMO

A diverse array of natural and anthropogenic particles found in the aquatic environment, can act as carriers of co-transported matter (CTM), such as nutrients, genetic material and contaminants. Thus, understanding carrier particle transport will increase our understanding of local and global fluxes of exogenous CTM (affiliated with the particle) and endogenous CTM (an inherent part of the particle). In the present contribution, researchers from multiple disciplines collaborated to provide perspectives on the interactions between carrier particles and CTM, and the fundamentals of transport of particles found in the aquatic environment and the generic spherical smooth particles, often used to make predictions about particle behavior in suspension. Evidently, the particles in the aquatic environment show a great variety of characteristics and vary greatly from each other as well as from the generic particle. However, in spite of these differences, many fundamental concepts apply to particles in general. We emphasize the importance of understanding the basic concepts of transport of particle-associated CTM, and the main assumptions in the generic-founded models, which are challenged by the diverging characteristics of particles found in the aquatic environment, as paramount moving forward. Additionally, we identified the need for a conceptual and semantic link between different scientific fields of particle research and initiated the formation of a consistent terminology. Disciplinary and organizational (academic and funding) barriers need to be overcome to enable individual researchers to move beyond their knowledge sphere, to stimulate future interdisciplinary collaborations and to avoid research silos. Hereby, we can foster faster and better progress of evolving research fields on new and emerging anthropogenic carrier particles, and stimulate the development of solutions to the technological and environmental challenges.


Assuntos
Pesquisa Interdisciplinar
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1118-1119: 194-202, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31059926

RESUMO

A rapid and sensitive liquid chromatography-mass spectrometry assay was developed and used to quantify emetic cereulide peptide exotoxin, which can be related to possible Bacillus cereus contamination in monoclonal antibody (mAb) bioprocess feeds. The assay limit of detection was 0.05 ng/mL (~1 fmol injected) and limit of quantification 0.16 ng/mL (~3 fmol injected) over a standard curve with >3 orders of magnitude linear dynamic range. The assay allowed quantification of toxin removal in an established two-step mAb purification process consisting of Protein A affinity chromatography followed by multi-modal anion exchange chromatography. Toxin content was ascertained in process stream sample fractions as well as on the Protein A affinity column. An optimized analytical method allowed separation of cereulide toxin from other mAb cell culture components within 6 min. Spiking experiments showed that samples should be collected in high (80% v/v) content acetonitrile to reduce nonspecific losses of the cereulide. The majority of mAb purification process-associated cereulide was detected in the Protein A flow through fraction, whereas only residual amounts were found in wash, strip, and elution fractions. Column cleaning-in-place (CIP) procedures were evaluated to prevent carryover between affinity capture cycles. No carryover was detected between cycles, however trace amounts of cereulide were extracted from the Protein A resin. Increasing the CIP NaOH concentration from 0.1 M to 0.5 M, and contact time from 15 min to 1 h, improved removal of residual cereulide from the resin. Applicability of CIP clearance of cereulide during Protein A chromatography was confirmed with three different mAb feeds. Post Protein A polishing, via target flow through on a multi-modal anion exchange chromatography column, resulted in a product pool with no detectable cereulide. Approximately 5 logs of reduction in cereulide concentration was obtained over the two-step chromatography process. Cereulide contamination is well known and of concern in food processing, however this research may be the first LC-MS quantification of cereulide contamination, and its clearance, in biopharmaceutical mAb processing. The analytical method may also be used to rapidly screen for cereulide contamination in upstream cell culture process streams, prior to downstream product purification. This will allow appropriate measures to be taken to reduce toxin exposure to downstream bioprocess raw materials, consumables and equipment.


Assuntos
Anticorpos Monoclonais/química , Toxinas Bacterianas/isolamento & purificação , Cromatografia de Afinidade/métodos , Depsipeptídeos/isolamento & purificação , Proteína Estafilocócica A/metabolismo , Animais , Bacillus cereus , Células CHO , Cricetinae , Cricetulus , Depsipeptídeos/metabolismo , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
7.
Artigo em Inglês | MEDLINE | ID: mdl-25464105

RESUMO

Recent innovations in designing purification processes for biopharmaceutical production have enabled initial screening (optimization) of chromatographic conditions for binding to be performed in miniaturized batch format. The present report demonstrates the possibility of using this format to screen for selectivity and illustrates the need for careful adjustment of protocols when highly abundant, tightly-binding impurities are present in the sample. This batch format approach was used to choose a chromatography medium (resin) from a selection of available resins for the purification of recombinant insulin expressed in E. coli and to screen binding and elution conditions. Subsequent optimization was performed in small packed columns using a Design of Experiments (DoE) approach with statistical modeling before scaling up to a small pilot scale experiment. In this study insulin was effectively purified from the more tightly-binding C-peptide, and a reduction in insulin variants was also noted using the optimized conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...