Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3611, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684677

RESUMO

The emergence of Homo sapiens in Eastern Asia is a topic of significant research interest. However, well-preserved human fossils in secure, dateable contexts in this region are extremely rare, and often the subject of intense debate owing to stratigraphic and geochronological problems. Tongtianyan cave, in Liujiang District of Liuzhou City, southern China is one of the most important fossils finds of H. sapiens, though its age has been debated, with chronometric dates ranging from the late Middle Pleistocene to the early Late Pleistocene. Here we provide new age estimates and revised provenience information for the Liujiang human fossils, which represent one of the most complete fossil skeletons of H. sapiens in China. U-series dating on the human fossils and radiocarbon and optically stimulated luminescence dating on the fossil-bearing sediments provided ages ranging from ~33,000 to 23,000 years ago (ka). The revised age estimates correspond with the dates of other human fossils in northern China, at Tianyuan Cave (~40.8-38.1 ka) and Zhoukoudian Upper Cave (39.0-36.3 ka), indicating the geographically widespread presence of H. sapiens across Eastern Asia in the Late Pleistocene, which is significant for better understanding human dispersals and adaptations in the region.


Assuntos
Fósseis , Datação Radiométrica , Humanos , China , Cavernas , Esqueleto , História Antiga , Sedimentos Geológicos
3.
Innovation (Camb) ; 2(3): 100130, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557770

RESUMO

It has recently become clear that several human lineages coexisted with Homo sapiens during the late Middle and Late Pleistocene. Here, we report an archaic human fossil that throws new light on debates concerning the diversification of the Homo genus and the origin of H. sapiens. The fossil was recovered in Harbin city in northeastern China, with a minimum uranium-series age of 146 ka. This cranium is one of the best preserved Middle Pleistocene human fossils. Its massive size, with a large cranial capacity (∼1,420 mL) falling in the range of modern humans, is combined with a mosaic of primitive and derived characters. It differs from all the other named Homo species by presenting a combination of features, such as long and low cranial vault, a wide and low face, large and almost square orbits, gently curved but massively developed supraorbital torus, flat and low cheekbones with a shallow canine fossa, and a shallow palate with thick alveolar bone supporting very large molars. The excellent preservation of the Harbin cranium advances our understanding of several less-complete late Middle Pleistocene fossils from China, which have been interpreted as local evolutionary intermediates between the earlier species Homo erectus and later H. sapiens. Phylogenetic analyses based on parsimony criteria and Bayesian tip-dating suggest that the Harbin cranium and some other Middle Pleistocene human fossils from China, such as those from Dali and Xiahe, form a third East Asian lineage, which is a part of the sister group of the H. sapiens lineage. Our analyses of such morphologically distinctive archaic human lineages from Asia, Europe, and Africa suggest that the diversification of the Homo genus may have had a much deeper timescale than previously presumed. Sympatric isolation of small populations combined with stochastic long-distance dispersals is the best fitting biogeographical model for interpreting the evolution of the Homo genus.

4.
Innovation (Camb) ; 2(3): 100131, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557771

RESUMO

As one of the most complete archaic human fossils, the Harbin cranium provides critical evidence for studying the diversification of the Homo genus and the origin of Homo sapiens. However, the unsystematic recovery of this cranium and a long and confused history since the discovery impede its accurate dating. Here, we carried out a series of geochemical analyses, including non-destructive X-ray fluorescence (XRF), rare earth elements (REE), and the Sr isotopes, to test the reported provenance of the Harbin cranium and get better stratigraphic constraints. The results show that the Harbin cranium has very similar XRF element distribution patterns, REE concentration patterns, and Sr isotopic compositions to those of the Middle Pleistocene-Holocene mammalian and human fossils recently recovered from the Harbin area. The sediments adhered in the nasal cavity of the Harbin cranium have a 87Sr/86Sr ratio of 0.711898, falling in the variation range measured in a core drilled near the Dongjiang Bridge, where the cranium was discovered during its reconstruction. The regional stratigraphic correlations indicate that the Harbin cranium was probably from the upper part of the Upper Huangshan Formation of the Harbin area, which has an optically stimulated luminescence dating constraint between 138 and 309 ka. U-series disequilibrium dating (n = 10) directly on the cranium suggests that the cranium is older than 146 ka. The multiple lines of evidence from our experiments consistently support the theory that the Harbin cranium is from the late Middle Pleistocene of the Harbin area. Our study also shows that geochemical approaches can provide reliable evidence for locating and dating unsystematically recovered human fossils, and potentially can be applied to other human fossils without clear provenance and stratigraphy records.

5.
Nature ; 580(7803): 372-375, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296179

RESUMO

The cranium from Broken Hill (Kabwe) was recovered from cave deposits in 1921, during metal ore mining in what is now Zambia1. It is one of the best-preserved skulls of a fossil hominin, and was initially designated as the type specimen of Homo rhodesiensis, but recently it has often been included in the taxon Homo heidelbergensis2-4. However, the original site has since been completely quarried away, and-although the cranium is often estimated to be around 500 thousand years old5-7-its unsystematic recovery impedes its accurate dating and placement in human evolution. Here we carried out analyses directly on the skull and found a best age estimate of 299 ± 25 thousand years (mean ± 2σ). The result suggests that later Middle Pleistocene Africa contained multiple contemporaneous hominin lineages (that is, Homo sapiens8,9, H. heidelbergensis/H. rhodesiensis and Homo naledi10,11), similar to Eurasia, where Homo neanderthalensis, the Denisovans, Homo floresiensis, Homo luzonensis and perhaps also Homo heidelbergensis and Homo erectus12 were found contemporaneously. The age estimate also raises further questions about the mode of evolution of H. sapiens in Africa and whether H. heidelbergensis/H. rhodesiensis was a direct ancestor of our species13,14.


Assuntos
Evolução Biológica , Hominidae , Crânio , Animais , Fósseis , Fatores de Tempo
6.
Nature ; 577(7790): 381-385, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853068

RESUMO

Homo erectus is the founding early hominin species of Island Southeast Asia, and reached Java (Indonesia) more than 1.5 million years ago1,2. Twelve H. erectus calvaria (skull caps) and two tibiae (lower leg bones) were discovered from a bone bed located about 20 m above the Solo River at Ngandong (Central Java) between 1931 and 19333,4, and are of the youngest, most-advanced form of H. erectus5-8. Despite the importance of the Ngandong fossils, the relationship between the fossils, terrace fill and ages have been heavily debated9-14. Here, to resolve the age of the Ngandong evidence, we use Bayesian modelling of 52 radiometric age estimates to establish-to our knowledge-the first robust chronology at regional, valley and local scales. We used uranium-series dating of speleothems to constrain regional landscape evolution; luminescence, 40argon/39argon (40Ar/39Ar) and uranium-series dating to constrain the sequence of terrace evolution; and applied uranium-series and uranium series-electron-spin resonance (US-ESR) dating to non-human fossils to directly date our re-excavation of Ngandong5,15. We show that at least by 500 thousand years ago (ka) the Solo River was diverted into the Kendeng Hills, and that it formed the Solo terrace sequence between 316 and 31 ka and the Ngandong terrace between about 140 and 92 ka. Non-human fossils recovered during the re-excavation of Ngandong date to between 109 and 106 ka (uranium-series minimum)16 and 134 and 118 ka (US-ESR), with modelled ages of 117 to 108 thousand years (kyr) for the H. erectus bone bed, which accumulated during flood conditions3,17. These results negate the extreme ages that have been proposed for the site and solidify Ngandong as the last known occurrence of this long-lived species.


Assuntos
Hominidae , Animais , Evolução Biológica , Fósseis , Indonésia , Ossos da Perna , Crânio , Fatores de Tempo
7.
Nature ; 571(7766): 500-504, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31292546

RESUMO

Two fossilized human crania (Apidima 1 and Apidima 2) from Apidima Cave, southern Greece, were discovered in the late 1970s but have remained enigmatic owing to their incomplete nature, taphonomic distortion and lack of archaeological context and chronology. Here we virtually reconstruct both crania, provide detailed comparative descriptions and analyses, and date them using U-series radiometric methods. Apidima 2 dates to more than 170 thousand years ago and has a Neanderthal-like morphological pattern. By contrast, Apidima 1 dates to more than 210 thousand years ago and presents a mixture of modern human and primitive features. These results suggest that two late Middle Pleistocene human groups were present at this site-an early Homo sapiens population, followed by a Neanderthal population. Our findings support multiple dispersals of early modern humans out of Africa, and highlight the complex demographic processes that characterized Pleistocene human evolution and modern human presence in southeast Europe.


Assuntos
Cavernas , Fósseis , Crânio/anatomia & histologia , Animais , Evolução Biológica , Grécia , Humanos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/classificação , Análise de Componente Principal , Datação Radiométrica , Fatores de Tempo
8.
Nature ; 568(7751): 181-186, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971845

RESUMO

A hominin third metatarsal discovered in 2007 in Callao Cave (Northern Luzon, the Philippines) and dated to 67 thousand years ago provided the earliest direct evidence of a human presence in the Philippines. Analysis of this foot bone suggested that it belonged to the genus Homo, but to which species was unclear. Here we report the discovery of twelve additional hominin elements that represent at least three individuals that were found in the same stratigraphic layer of Callao Cave as the previously discovered metatarsal. These specimens display a combination of primitive and derived morphological features that is different from the combination of features found in other species in the genus Homo (including Homo floresiensis and Homo sapiens) and warrants their attribution to a new species, which we name Homo luzonensis. The presence of another and previously unknown hominin species east of the Wallace Line during the Late Pleistocene epoch underscores the importance of island Southeast Asia in the evolution of the genus Homo.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Ossos do Metatarso/anatomia & histologia , Animais , Evolução Biológica , Cavernas , Classificação , Filipinas , Especificidade da Espécie
9.
PLoS One ; 14(4): e0214925, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943255

RESUMO

Neanderthals had complex land use patterns, adapting to diversified landscapes and climates. Over the past decade, considerable progress has been made in reconstructing the chronology, land use and subsistence patterns, and occupation types of sites in the Rhône Valley, southeast France. In this study, Neanderthal mobility at the site of Payre is investigated by combining information from lithic procurement analysis ("chaîne evolutive" and "chaîne opératoire" concepts) and strontium isotope analysis of teeth (childhood foraging area), from two units (F and G). Both units date to the transition from Marine Isotope Stage (MIS) 8 to MIS 7, and show similar environmental conditions, but represent contrasting occupation durations. Level Gb (unit G) represents a long-term year-round use, in contrast to short-term seasonal use of the cave in level Fb (unit F). For both levels, lithic material and food were generally collected from a local to semi-local region. However, in level Gb, lithic materials were mainly collected from colluviums and food collected in the valley, whereas in level Fb, lithic procurement focused primarily on alluvial deposits and food was collected from higher elevation plateaus. These procurement or exchange patterns might be related to flint availability, knapping advantages of alluvial flint or occupation duration. The site of Payre is located in a flint rich circulation corridor and the movement of groups or exchanges between groups were organized along a north-south axis on the plateaus or towards the east following the river. The ridges were widely used as they are rich in flint, whereas the Rhône Valley is not an important source of lithic raw materials. Compared to other western European Middle Palaeolithic sites, these results indicate that procurement strategies have a moderate link with occupation types and duration, and with lithic technology. The Sr isotope ratios broadly match the proposed foraging areas, with the Rhône Valley being predominantly used in unit G and the ridges and limestone plateaus in unit F. While lithic reconstructions and childhood foraging are not directly related this suggests that the three analysed Neanderthals spend their childhood in the same general area and supports the idea of mobile Neanderthals in the Rhône Valley and neighbouring higher elevation plateaus. The combination of reconstructing lithic raw material sources, provisioning strategies, and strontium isotope analyses provides new details on how Neanderthals at Payre practised land use and mobility in the Early Middle Palaeolithic.


Assuntos
Arqueologia , Clima , Fósseis , Homem de Neandertal , Isótopos de Estrôncio/análise , Dente , Animais , França , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/metabolismo , Dente/anatomia & histologia , Dente/química , Dente/metabolismo
10.
Nature ; 565(7741): 640-644, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700871

RESUMO

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Assuntos
Cavernas , Fósseis , Hominidae , Datação Radiométrica , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Cervos , Fêmur/química , Sedimentos Geológicos/química , História Antiga , Hominidae/genética , Humanos , Homem de Neandertal/genética , Isótopos de Oxigênio , Sibéria , Fatores de Tempo , Dente/química
11.
Sci Adv ; 4(10): eaau9483, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30402544

RESUMO

Scholars endeavor to understand the relationship between human evolution and climate change. This is particularly germane for Neanderthals, who survived extreme Eurasian environmental variation and glaciations, mysteriously going extinct during a cool interglacial stage. Here, we integrate weekly records of climate, tooth growth, and metal exposure in two Neanderthals and one modern human from southeastern France. The Neanderthals inhabited cooler and more seasonal periods than the modern human, evincing childhood developmental stress during wintertime. In one instance, this stress may have included skeletal mobilization of elemental stores and weight loss; this individual was born in the spring and appears to have weaned 2.5 years later. Both Neanderthals were exposed to lead at least twice during the deep winter and/or early spring. This multidisciplinary approach elucidates direct relationships between ancient environments and hominin paleobiology.


Assuntos
Exposição Ambiental/efeitos adversos , Fósseis , Chumbo/toxicidade , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/fisiologia , Dente/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Datação Radiométrica , Estações do Ano , Dente/efeitos dos fármacos , Dente/patologia
12.
Science ; 362(6413)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30361343

RESUMO

Our original claim, based on three independent numerical dating methods, of an age of ~185,000 years for the Misliya-1 modern human hemi-maxilla from Mount Carmel, Israel, is little affected by discounting uranium-series dating of adhering crusts. It confirms a much earlier out-of-Africa Homo sapiens expansion than previously suggested by the considerably younger (90,000 to 120,000 years) Skhul/Qafzeh hominins.


Assuntos
Evolução Biológica , Fósseis , África , Animais , Hominidae , Humanos , Israel
14.
Nat Ecol Evol ; 2(5): 800-809, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632352

RESUMO

Understanding the timing and character of the expansion of Homo sapiens out of Africa is critical for inferring the colonization and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130-90 thousand years ago (ka), that reached only the East Mediterranean Levant, and a later phase, ~60-50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95-86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall.


Assuntos
Fósseis , Migração Humana , Arqueologia , Meio Ambiente , Humanos , Arábia Saudita
15.
PLoS One ; 13(4): e0193025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641524

RESUMO

This paper presents a reassessment of the archaeological record at Leang Burung 2, a key early human occupation site in the Late Pleistocene of Southeast Asia. Excavated originally by Ian Glover in 1975, this limestone rock-shelter in the Maros karsts of Sulawesi, Indonesia, has long held significance in our understanding of early human dispersals into 'Wallacea', the vast zone of oceanic islands between continental Asia and Australia. We present new stratigraphic information and dating evidence from Leang Burung 2 collected during the course of our excavations at this site in 2007 and 2011-13. Our findings suggest that the classic Late Pleistocene modern human occupation sequence identified previously at Leang Burung 2, and proposed to span around 31,000 to 19,000 conventional 14C years BP (~35-24 ka cal BP), may actually represent an amalgam of reworked archaeological materials. Sources for cultural materials of mixed ages comprise breccias from the rear wall of the rock-shelter-remnants of older, eroded deposits dated to 35-23 ka cal BP-and cultural remains of early Holocene antiquity. Below the upper levels affected by the mass loss of Late Pleistocene deposits, our deep-trench excavations uncovered evidence for an earlier hominin presence at the site. These findings include fossils of now-extinct proboscideans and other 'megafauna' in stratified context, as well as a cobble-based stone artifact technology comparable to that produced by late Middle Pleistocene hominins elsewhere on Sulawesi.


Assuntos
Arqueologia , Fósseis , Tecnologia , Animais , Hominidae , Humanos , Indonésia , Ilhas
16.
Science ; 359(6374): 456-459, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371468

RESUMO

To date, the earliest modern human fossils found outside of Africa are dated to around 90,000 to 120,000 years ago at the Levantine sites of Skhul and Qafzeh. A maxilla and associated dentition recently discovered at Misliya Cave, Israel, was dated to 177,000 to 194,000 years ago, suggesting that members of the Homo sapiens clade left Africa earlier than previously thought. This finding changes our view on modern human dispersal and is consistent with recent genetic studies, which have posited the possibility of an earlier dispersal of Homo sapiens around 220,000 years ago. The Misliya maxilla is associated with full-fledged Levallois technology in the Levant, suggesting that the emergence of this technology is linked to the appearance of Homo sapiens in the region, as has been documented in Africa.


Assuntos
Evolução Biológica , Migração Humana/história , África , Cavernas , Dentição , Fósseis , História Antiga , Humanos , Israel , Maxila , Tecnologia/história
17.
J Hum Evol ; 109: 22-29, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28688457

RESUMO

Laser ablation U-series dating results on a human cranial bone fragment from Apidima, on the western cost of the Mani Peninsula, Southern Greece, indicate a minimum age of 160,000 years. The dated cranial fragment belongs to Apidima 2, which preserves the facial skeleton and a large part of the braincase, lacking the occipital bone. The morphology of the preserved regions of the cranium, and especially that of the facial skeleton, indicates that the fossil belongs to the Neanderthal clade. The dating of the fossil at a minimum age of 160,000 years shows that most of the Neanderthal traits were already present in the MIS 6 and perhaps earlier. This makes Apidima 2 the earliest known fossil with a clear Neanderthal facial morphology. Together with the nearby younger Neanderthal specimens from Lakonis and Kalamakia, the Apidima crania are of crucial importance for the evolution of Neanderthals in the area during the Middle to Late Pleistocene. It can be expected that systematic direct dating of the other human fossils from this area will elucidate our understanding of Neanderthal evolution and demise.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Ossos Faciais/anatomia & histologia , Grécia , Humanos , Homem de Neandertal/anatomia & histologia
18.
Nature ; 546(7657): 293-296, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28593967

RESUMO

The timing and location of the emergence of our species and of associated behavioural changes are crucial for our understanding of human evolution. The earliest fossil attributed to a modern form of Homo sapiens comes from eastern Africa and is approximately 195 thousand years old, therefore the emergence of modern human biology is commonly placed at around 200 thousand years ago. The earliest Middle Stone Age assemblages come from eastern and southern Africa but date much earlier. Here we report the ages, determined by thermoluminescence dating, of fire-heated flint artefacts obtained from new excavations at the Middle Stone Age site of Jebel Irhoud, Morocco, which are directly associated with newly discovered remains of H. sapiens. A weighted average age places these Middle Stone Age artefacts and fossils at 315 ± 34 thousand years ago. Support is obtained through the recalculated uranium series with electron spin resonance date of 286 ± 32 thousand years ago for a tooth from the Irhoud 3 hominin mandible. These ages are also consistent with the faunal and microfaunal assemblages and almost double the previous age estimates for the lower part of the deposits. The north African site of Jebel Irhoud contains one of the earliest directly dated Middle Stone Age assemblages, and its associated human remains are the oldest reported for H. sapiens. The emergence of our species and of the Middle Stone Age appear to be close in time, and these data suggest a larger scale, potentially pan-African, origin for both.


Assuntos
Arqueologia/métodos , Cronologia como Assunto , Fósseis , Hominidae , Filogenia , África/etnologia , Animais , Espectroscopia de Ressonância de Spin Eletrônica , História Antiga , Hominidae/classificação , Humanos , Mandíbula , Marrocos , Dente , Urânio/análise
19.
Elife ; 62017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28483040

RESUMO

New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of 222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/-70 ka, whilst a minimum age scenario yields an average age of 200 +70/-61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphology.


Assuntos
Fósseis , Sedimentos Geológicos , Hominidae , Datação Radiométrica , Animais , Osso e Ossos , Geologia/métodos , Paleontologia/métodos , África do Sul
20.
Proc Natl Acad Sci U S A ; 114(16): 4105-4110, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373568

RESUMO

Wallacea, the zone of oceanic islands separating the continental regions of Southeast Asia and Australia, has yielded sparse evidence for the symbolic culture of early modern humans. Here we report evidence for symbolic activity 30,000-22,000 y ago at Leang Bulu Bettue, a cave and rock-shelter site on the Wallacean island of Sulawesi. We describe hitherto undocumented practices of personal ornamentation and portable art, alongside evidence for pigment processing and use in deposits that are the same age as dated rock art in the surrounding karst region. Previously, assemblages of multiple and diverse types of Pleistocene "symbolic" artifacts were entirely unknown from this region. The Leang Bulu Bettue assemblage provides insight into the complexity and diversification of modern human culture during a key period in the global dispersal of our species. It also shows that early inhabitants of Sulawesi fashioned ornaments from body parts of endemic animals, suggesting modern humans integrated exotic faunas and other novel resources into their symbolic world as they colonized the biogeographically unique regions southeast of continental Eurasia.


Assuntos
Arte/história , Fósseis , Comportamento Social , Simbolismo , Arqueologia , História Antiga , Atividades Humanas , Migração Humana , Humanos , Indonésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...