Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 77(12): 1163-74, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11747541

RESUMO

PURPOSE: To analyse the relationship between radiation-induced clonogenic cell death, chromosome aberrations and markers of proliferative senescence or differentiation. MATERIALS AND METHODS: Plateau-phase human dermal fibroblasts from 18 donors were irradiated with graded doses of 1-6 Gy 200kV X-rays. Cell survival was determined by a colony-forming assay. Markers of differentiation or senescence were: spontaneous and radiation-induced clonal differentiation, which was determined morphologically and by the cellular potential to proliferate in clonal culture, also single-cell beta-galactosidase (beta-gal) staining at pH 6.0; and the secretion of transforming growth factor-beta (TGF-beta1) into the culture medium. Chromosome aberrations were determined as genomic yields of dicentric chromosomes and the excess acentric fragments, scored in Giemsa-stained metaphases, and as partial yields of reciprocal translocations for chromosomes 4, 7 and 9 using the FISH method. RESULTS: A broad spread was found in the shapes of the survival curves, with SF2 ranging from 0.041+/-0.015 to 0.63+/-0.05. Radiation-induced clonal differentiation as well as the secretion of TGF-beta1 was elevated in radiosensitive samples. With respect to chromosome aberrations, a significant correlation was found between clonogenic survival and radiation-induced excess acentric fragments. CONCLUSIONS: In the fibroblast cell system, in vitro radiosensitivity is determined not only by processes directly involved in DNA-damage recognition and repair, but also by intracellular signalling cascades, which will lead to differentiation processes.


Assuntos
Fibroblastos/efeitos da radiação , Raios X , Morte Celular , Diferenciação Celular , Divisão Celular , Sobrevivência Celular , Células Cultivadas , Senescência Celular , Aberrações Cromossômicas , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Técnicas In Vitro , Metáfase , Tolerância a Radiação , Transdução de Sinais , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...