Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mycorrhiza ; 32(5-6): 387-395, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35794357

RESUMO

Despite their ubiquity in terrestrial ecosystems, arbuscular mycorrhizal fungi (AMF) experience dispersion constraints and thus depend on the spatial distribution of the plant hosts. Our understanding of fungal-plant interactions with respect to their spatial distributions and implications for the functioning of the symbiosis remain limited. We here manipulated the location of habitat patches of Medicago lupulina in two experiments to explore the responses of AMF root colonization and extraradical hyphae. We tested the specific hypothesis that AMF-plant habitats high in connectance would stimulate root colonization and induce denser functional root colonization (colonization rate of arbuscules plus coils) because of higher propagule availability between nearby host plant patches (experiment 1). In experiment 2, we anticipated similar responses in mixed habitats of different soil fertility, namely phosphorus-fertilized or unfertilized soil, and anticipated a higher density of extraradical hyphae in the soil connecting the habitats with increased functional root colonization. In agreement with our hypothesis, we found the highest total and functional root colonization in unfragmented micro-landscapes, describing landscapes that occur within a spatial scale of a few centimeters with the AMF-plant habitats positioned adjacent to each other. In the second experiment, overdispersed micro-landscapes promoted functional root colonization. This study provides experimental evidence that the spatial distribution of habitats can determine AMF abundance at the microscale.


Assuntos
Micorrizas , Ecossistema , Micorrizas/fisiologia , Fósforo , Raízes de Plantas/microbiologia , Plantas , Solo , Simbiose
2.
Mycorrhiza ; 31(5): 589-598, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34279725

RESUMO

Many woody and herbaceous plants in temperate forests cannot establish and survive in the absence of mycorrhizal associations. Most temperate forests are dominated by ectomycorrhizal woody plant species, which implies that the carrying capacity of the habitat for arbuscular mycorrhizal fungi (AMF) is relatively low and AMF could in some cases experience a limitation of propagules. Here we address how the AMF community composition varied in a small temperate forest site in Germany in relation to time, space, two plant host species, and also with regard to the degree to which plots were covered with AMF-associating woody species. The AMF communities in our study were non-random. We observed that space had a greater impact on fungal community composition than either time, mycorrhizal state of the close-by woody species, or the identity of the host plant. The identity of the host plant was the only parameter that modified AMF richness in the roots. The set of parameters which we addressed has rarely been studied together, and the resulting ranking could ease prioritizing some of them to be included in future surveys. AMF are crucial for the establishment of understory plants in temperate forests, making it desirable to further explore how they vary in time and space.


Assuntos
Micobioma , Micorrizas , Florestas , Especificidade de Hospedeiro , Raízes de Plantas , Microbiologia do Solo
3.
PLoS Comput Biol ; 16(11): e1008313, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211687

RESUMO

When running a lab we do not think about calamities, since they are rare events for which we cannot plan while we are busy with the day-to-day management and intellectual challenges of a research lab. No lab team can be prepared for something like a pandemic such as COVID-19, which has led to shuttered labs around the globe. But many other types of crises can also arise that labs may have to weather during their lifetime. What can researchers do to make a lab more resilient in the face of such exterior forces? What systems or behaviors could we adjust in 'normal' times that promote lab success, and increase the chances that the lab will stay on its trajectory? We offer 10 rules, based on our current experiences as a lab group adapting to crisis.


Assuntos
COVID-19/psicologia , Pessoal de Laboratório/psicologia , COVID-19/epidemiologia , COVID-19/virologia , Comportamento Cooperativo , Humanos , Relações Interprofissionais , Pandemias , Admissão e Escalonamento de Pessoal , SARS-CoV-2/isolamento & purificação , Mídias Sociais , Incerteza
4.
New Phytol ; 227(6): 1610-1614, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32147825

RESUMO

A recent study by Sugiura and coworkers reported the non-symbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology.


Assuntos
Glomeromycota , Micorrizas , Ecossistema , Fungos , Miristatos , Ácido Mirístico , Raízes de Plantas , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...