Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 311: 104032, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758781

RESUMO

Brainstem neural circuits located in the preBötzinger complex (preBötC) and Bötzinger complex (BötC) play a critical role in the control of breathing. In this study, glycinergic preBötC and BötC neurons were inactivated with optogenetics in vivo using mice with Cre inducible expression of eNpHR3.0-EYFP. Unilateral inhibition of glycinergic neurons in the preBötC, and to a lower extend also in the BötC, led to a higher respiratory rate. It can be concluded that functional inactivation of inhibitory neurons leads to a disinhibition of preBötC excitatory neurons and thus an increase in the respiratory drive of the network.


Assuntos
Optogenética , Taxa Respiratória , Camundongos , Animais , Centro Respiratório/fisiologia , Neurônios/metabolismo , Respiração
2.
Respir Physiol Neurobiol ; 248: 43-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203410

RESUMO

The glycine receptor α3 subunit is known to be a target for cAMP/PKA-mediated phosphorylation and regulation. Mice that lack this subunit are apparently normal but the 5-HT1A-receptor mediated modulation of respiratory network activity is disturbed. Since the intracellular cAMP-concentration is reduced in mice that lack the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2) gene, we aimed to test if the α3 subunit of the glycine receptor is involved in the development of the breathing phenotype of MeCP2-deficient mice (Mecp2-/y). Therefore, we generated a double knock-out mouse line that lacks both the Mecp2 gene as well as the gene (Glra3) for the α3 subunit of the ionotropic glycine receptor. As compared to WT and Glra3-/- mice, both Mecp2-/y mice and Mecp2-/y; Glra3-/- mice (DKO) showed a slower respiratory rate and a tendency towards higher numbers of apneas. Interestingly, the irregularity of the breathing was significantly reduced in DKO as compared to Mecp2-/y littermates. In the light of the unaltered survival of DKO mice, however, the contribution of the glycine receptor α3 subunit for development and progression of the breathing disturbances in the mouse model of Rett syndrome appears to be only of minor relevance.


Assuntos
Receptores de Glicina/metabolismo , Transtornos Respiratórios/etiologia , Síndrome de Rett/complicações , Síndrome de Rett/genética , Animais , Modelos Animais de Doenças , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pletismografia , Receptores de Glicina/genética , Transtornos Respiratórios/genética , Síndrome de Rett/mortalidade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...