Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(5): e59940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854195

RESUMO

Refractory pediatric intraoperative cardiac arrest is a rare but challenging situation for the anesthesiologist. This case describes an intraoperative extracorporeal cardiopulmonary resuscitation (ECPR) in a 16-year-old male who suffered a sudden cardiac arrest during elective thoracolumbar stabilization. The patient recovered to his pre-operative baseline without any neurological sequela secondary to cardiac arrest. Good quality of conventional resuscitation measures, prompt activation of the extracorporeal membrane oxygenation (ECMO) team, and a multidisciplinary coordinated approach were key factors in ECPR success. Despite the lack of robust evidence in pediatrics, case reports like ours outline the life-saving potential of intraoperative ECPR in refractory cardiac arrest scenarios.

2.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365395

RESUMO

Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.

3.
Biomimetics (Basel) ; 7(2)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35735589

RESUMO

BACKGROUND: The presence of posterior crossbite can trigger aesthetic and functional changes as mandibular asymmetry in individuals, contributing to asymmetrical muscle function. Mandibular asymmetry and respective condyle adaptation may be an etiological factor in temporomandibular disorder. This study aims to evaluate the effects of maxillary expansion on the position and angulation of the condyles as well as the intercondylar distance in children with cleft lip and palate. METHODS: Twenty-five individuals with cleft lip and palate who underwent maxillary expansion were selected. Condylar changes were evaluated by cone beam computed tomography using the Pullinger and Hollender formula. To determine the statistically significant differences between the variables, the Student t-test and the Benjamini-Hochberg correction method for multiple comparisons were used. RESULTS: No statistically significant differences between angulation and condylar position before and after maxillary expansion were found. The intercondylar distance tended to increase in growing individuals with cleft lip and palate after maxillary expansion. CONCLUSIONS: Intercondylar distance shows a tendency to increase after expansion regardless of the cleft phenotype. No differences were found in angulation and condylar position with the changes in occlusion resulting from maxillary expansion.

4.
Biomed Pharmacother ; 141: 111681, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34139552

RESUMO

Renal Cell Carcinoma (RCC) is on the top 10 of the most incident cancers worldwide, being a third of patients diagnosed with advanced disease, for which no curative therapies are currently available. Thus, new effective therapeutic strategies are urgently needed. Herein, we tested the antineoplastic effect of newly synthesized 3-nitroflavanones (MLo1302) on RCC cell lines. 786-O, Caki2, and ACHN cell lines were cultured and treated with newly synthesized 3-nitroflavanones. IC50 values were calculated based on the effect on cell viability assessed by MTT assay, after 72 h of exposure. MLo1302 displayed antineoplastic properties in RCC cell lines through marked reduction of cell viability, increased apoptosis and DNA damage, and morphometric alterations indicating a less aggressive phenotype. MLo1302 induced a significant reduction of global DNA methylation and DNMT mRNA levels, increasing global DNA hydroxymethylation and TET expression. Moreover, MLo1302 decreased DNMT3A activity in RCC cell lines, demethylated and re-expressed hypermethylated genes in CAM-generated tumors. A marked in vivo decrease in tumor growth and angiogenesis was also disclosed. MLo1302 disclosed antineoplastic and demethylating activity in RCC cell lines, constituting a potential therapeutic agent for RCC patients.


Assuntos
Antineoplásicos/síntese química , Carcinoma de Células Renais/metabolismo , Metilação de DNA/efeitos dos fármacos , Desmetilação/efeitos dos fármacos , Flavanonas/síntese química , Neoplasias Renais/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Embrião de Galinha , Metilação de DNA/fisiologia , Relação Dose-Resposta a Droga , Flavanonas/farmacologia , Humanos
5.
Cancers (Basel) ; 12(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344886

RESUMO

Sirtuins are emerging players in cancer biology and other age-related disorders, and their putative role in bladder cancer (BlCa) remains elusive. Further understanding of disease biology may allow for generation of more effective pathway-based biomarkers and targeted therapies. Herein, we aimed to illuminate the role of sirtuins' family in BlCa and evaluate their potential as disease biomarkers and therapeutic targets. SIRT1-7 transcripts and protein levels were evaluated in a series of primary BlCa and normal bladder mucosa tissues. SIRT7 knockdown was performed through lentiviral transduction in MGHU3, 5637 and J82 cells and its functional role was assessed. SIRT1, 2, 4 and 5 expression levels were significantly lower in BlCa, whereas SIRT6 and 7 were overexpressed, and these results were corroborated by TCGA cohort analysis. SIRT7 transcript levels were significantly decreased in muscle-invasive vs. papillary BlCa. In vitro studies showed that SIRT7 downregulation promoted cells migration and invasion. Accordingly, increased EMT markers expression and decreased E-Cadherin (CDH1) was observed in those BlCa cells. Moreover, increased EZH2 expression and H3K27me3 deposition in E-Cadherin promoter was found in sh-SIRT7 cells. We demonstrated that sirtuins are globally deregulated in BlCa, and specifically SIRT7 downregulation is implicated in EMT, fostering BlCa invasiveness through EZH2-CDH1 axis.

6.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861944

RESUMO

Casuarina glauca displays high levels of salt tolerance, but very little is known about how this tree adapts to saline conditions. To understand the molecular basis of C. glauca response to salt stress, we have analyzed the proteome from branchlets of plants nodulated by nitrogen-fixing Frankia Thr bacteria (NOD+) and non-nodulated plants supplied with KNO3 (KNO3+), exposed to 0, 200, 400, and 600 mM NaCl. Proteins were identified by Short Gel, Long Gradient Liquid Chromatography coupled to Tandem Mass Spectrometry and quantified by Sequential Window Acquisition of All Theoretical Mass Spectra -Mass Spectrometry. 600 proteins were identified and 357 quantified. Differentially Expressed Proteins (DEPs) were multifunctional and mainly involved in Carbohydrate Metabolism, Cellular Processes, and Environmental Information Processing. The number of DEPs increased gradually with stress severity: (i) from 7 (200 mM NaCl) to 40 (600 mM NaCl) in KNO3+; and (ii) from 6 (200 mM NaCl) to 23 (600 mM NaCl) in NOD+. Protein-protein interaction analysis identified different interacting proteins involved in general metabolic pathways as well as in the biosynthesis of secondary metabolites with different response networks related to salt stress. Salt tolerance in C. glauca is related to a moderate impact on the photosynthetic machinery (one of the first and most important stress targets) as well as to an enhancement of the antioxidant status that maintains cellular homeostasis.


Assuntos
Frankia/fisiologia , Magnoliopsida/fisiologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/fisiologia , Tolerância ao Sal , Magnoliopsida/microbiologia , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Nódulos Radiculares de Plantas/microbiologia , Salinidade , Simbiose
7.
Cancer Cell Int ; 19: 112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164793

RESUMO

BACKGROUND: Prostate cancer (PCa), a major cause of cancer-related morbidity and mortality worldwide and mostly asymptomatic at earliest stages, is characterized by disruption of genetic and epigenetic balance. A better understanding of how those mechanisms orchestrate disease might improve diagnostic and prognostic tools, allowing for improvements in treatment efficacy. Replacement of canonical histones, an epigenetic mechanism, is highly conserved among species and altered expression of histones variants (e.g., MacroH2A1) has been associated with tumorigenesis. H2AFY gene encodes two isoforms of H2A histone variant MacroH2A1: MacroH2A1.1 and MacroH2A1.2. Specifically, MacroH2A1.1 isoform inhibits cell proliferation and promotes cellular differentiation. Because the contribution of this histone variant to carcinogenesis has been reported in several cancer types, but not for PCa, we aimed to investigate the contribution of MacroH2A1 for prostate carcinogenesis. METHODS: MacroH2A1, MacroH2A1.1 and MacroH2A1.2 isoforms and the corresponding splicing regulators transcript levels were evaluated by RT-qPCR, in a tissue cohort composed by PCa, prostatic intraepithelial neoplasia (PIN) and normal prostate cases. Knockdown for MacroH2A1 and MacroH2A1.1 was performed through lentiviral transduction in DU145 cells, and MacroH2A1.1 overexpression was achieved in LNCaP cells by plasmid transfection, followed by functional assays. Biological and/or experimental replicates were performed when necessary, and specific statistical tests were applied to perform data analysis. RESULTS: MacroH2A1.1 transcript levels were downregulated in PIN and primary PCa compared to normal prostate tissues. The same was found for QKI, a MacroH2A1.1's splicing regulator. Moreover, lower MacroH2A1.1 and QKI expression levels associated with less differentiated tumors (Gleason score ≥ 7). Interestingly, MacroH2A1.1, but more impressively DDX17 (AUC = 0.93; p < 0.0001) and QKI (AUC = 0.94; p < 0.0001), accurately discriminated cancerous from noncancerous prostate tissues. Furthermore, in PCa cell lines, total MacroH2A1 knockdown augmented malignant features, whereas MacroH2A1.1 overexpression impressively attenuated the malignant phenotype. CONCLUSIONS: Overall, our data, derived from primary PCa tissues and cell lines, anticipate a tumor suppressive role for MacroH2A1, particularly for the MacroH2A1.1 isoform, in prostate carcinogenesis.

8.
iScience ; 15: 467-488, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31125909

RESUMO

In biomass conversion, Nb2O5 has attracted increasing attention as a catalyst support presenting water-tolerant Lewis acid sites. Herein, we address the design of Ni/Nb2O5 catalysts for hydrotreating of lignin to hydrocarbons. To optimize the balance between acidic and hydrogenating properties, the catalysts were first evaluated in the hydrotreating of diphenyl ether. The best catalyst candidate was further explored in the conversion of lignin oil obtained by catalytic upstream biorefining of poplar. As primary products, cycloalkanes were obtained, demonstrating the potential of Ni/Nb2O5 catalysts for the lignin-to-fuels route. However, the Lewis acidity of Nb2O5 also catalyzes coke formation via lignin species condensation. Thereby, an acidity threshold should be found so that dehydration reactions essential to the hydrotreatment are not affected, but the condensation of lignin species prevented. This article provides a critical "beginning-to-end" analysis of aspects crucial to the catalyst design to produce lignin biofuels.

9.
ChemSusChem ; 12(6): 1203-1212, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30673171

RESUMO

For the utilization of each lignin fraction in the lignin liquors, the development of separation strategies to fractionate the lignin streams by molecular weight ranges constitutes a timely challenge to be tackled. Herein, membrane filtration was applied to the refining of lignin streams obtained from a lignin-first biorefining process based on H-transfer reactions catalyzed by Raney Ni, by using 2-PrOH as a part of the lignin extraction liquor and as an H-donor. A two-stage membrane cascade was considered to separate and concentrate the monophenol-rich fraction from the liquor. Building on the results, an economic evaluation of the potential of membrane filtration for the refining of lignin streams was undertaken. In this proof-of-concept report, a detailed analysis is presented of future developments in the performance required for the utilization of membrane filtration for lignin refining and, more aspiringly, solvent reclamation.

10.
Front Pharmacol ; 9: 366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706891

RESUMO

Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.

11.
Clin Epigenetics ; 10: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599847

RESUMO

Background: Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. MicroRNAs are globally downregulated in PCa, especially in poorly differentiated tumors. Nonetheless, the underlying mechanisms are still elusive. Herein, using combined analysis of microRNAs expression and genomewide DNA methylation, we aimed to identify epigenetically downregulated microRNAs in PCa. Results: We found that miR-152-3p was underexpressed in PCa and that lower expression levels were associated with promoter hypermethylation in accordance with TCGA dataset analysis. Functional in vitro assays suggest that miR-152-3p suppresses cell viability and invasion potential, whereas it promotes cell cycle arrest at S and G2/M phases. Additionally, miR-152-3p expression was associated with longer disease-free survival in PCa patients from TCGA. Finally, TMEM97, which is overexpressed in PCa, was identified as a novel miR-152-3p target gene. Conclusions: Our findings demonstrate the advantages of using a combinatory approach to identify microRNAs downregulated due to aberrant promoter methylation. MiR-152-3p downregulation and promoter methylation was found to be prevalent in primary PCa, which impairs its role in control of cell viability, cell cycle regulation and invasion.


Assuntos
Metilação de DNA , Proteínas de Membrana/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida
12.
Cell Death Dis ; 9(2): 167, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415999

RESUMO

Upregulation of MYC and miRNAs deregulation are common in prostate cancer (PCa). Overactive MYC may cause miRNAs' expression deregulation through transcriptional and post-transcriptional mechanisms and epigenetic alterations are also involved in miRNAs dysregulation. Herein, we aimed to elucidate the role of regulatory network between MYC and miRNAs in prostate carcinogenesis. MYC expression was found upregulated in PCa cases and matched precursor lesions. MicroRNA's microarray analysis of PCa samples with opposed MYC levels identified miRNAs significantly overexpressed in high-MYC PCa. However, validation of miR-27a-5p in primary prostate tissues disclosed downregulation in PCa, instead, correlating with aberrant promoter methylation. In a series of castration-resistant PCa (CRPC) cases, miR-27a-5p was upregulated, along with promoter hypomethylation. MYC and miR-27a-5p expression levels in LNCaP and PC3 cells mirrored those observed in hormone-naíve PCa and CRPC, respectively. ChIP analysis showed that miR-27a-5p expression is only regulated by c-Myc in the absence of aberrant promoter methylation. MiR-27a-5p knockdown in PC3 cells promoted cell growth, whereas miRNA forced expression in LNCaP and stable MYC-knockdown PC3 cells attenuated the malignant phenotype, suggesting a tumor suppressive role for miR-27a-5p. Furthermore, miR-27a-5p upregulation decreased EGFR/Akt1/mTOR signaling. We concluded that miR-27a-5p is positively regulated by MYC, and its silencing due to aberrant promoter methylation occurs early in prostate carcinogenesis, concomitantly with loss of MYC regulatory activity. Our results further suggest that along PCa progression, miR-27a-5p promoter becomes hypomethylated, allowing for MYC to resume its regulatory activity. However, the altered cellular context averts miR-27a-5p from successfully accomplishing its tumor suppressive function at this stage of disease.


Assuntos
Carcinogênese/genética , Metilação de DNA/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , Idoso , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Fenótipo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/genética
13.
Urol Oncol ; 36(4): 161.e7-161.e17, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29174711

RESUMO

INTRODUCTION: Overtreatment is a major concern in patients with prostate cancer (PCa). Prognostic biomarkers discriminating indolent from aggressive disease in prostate biopsy are urgently needed. We aimed to evaluate the prognostic value of Ki67, EZH2, LSD1, and SMYD3 immunoexpression in diagnostic biopsies from a cohort of PCa patients with long term follow-up. MATERIALS AND METHODS: A series of 189 consecutive prostate biopsies diagnosed with PCa (1997-2001) in a cancer center was included in the study, with follow-up last updated in November 2016. Biopsies were reviewed and graded according to 2016 WHO criteria. Immunohistochemistry was performed in the most representative block. Nuclear staining was assessed using digital image analysis. Study outcomes included disease-specific, disease-free, and progression-free survival. Statistical analysis was tabulated using SPSS version 22.0. Survival curves and hazard ratios (HRs) were estimated using Kaplan-Meyer and Cox-regression models, respectively. Statistical significance was set at P<0.05. RESULTS: The proportion of patients who completed the study was 177/189 (94%). In univariable analysis, high Ki67, EZH2, and SMYD3 immunoexpression associated with significantly worse disease-specific survival (HR = 1.86, 95% CI: 1.05-3.29; HR = 1.87, 95% CI: 1.10-3.27; HR = 2.68, 95% CI: 1.02-7.92). In multivariable analysis, the 3 biomarkers displayed significantly worse DSS adjusted for CAPRA score (HR = 1.78, 95% CI: 1.01-3.16; HR = 1.93, 95% CI: 1.12-3.32; HR = 2.71, 95% CI: 1.04-7.10). Among patients with low/intermediate risk CAPRA score, high Ki67 immunoexpression identified those more prone to experience disease recurrence (HR = 9.20, 95% CI: 1.27-66.44) and progression (HR = 2.97, 95% CI: 1.05-8.43). CONCLUSIONS: High Ki67, EZH2, and SMYD3 immunoexpression, adjusted for standard clinicopathological parameters, independently predicts outcome in patients with PCa, at diagnosis. This might assist in discriminating indolent from aggressive PCa, improving treatment selection.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias da Próstata/patologia , Idoso , Biópsia , Intervalo Livre de Doença , Seguimentos , Humanos , Imuno-Histoquímica , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/mortalidade , Estudos Retrospectivos , Análise de Sobrevida
16.
J Biomed Mater Res A ; 105(7): 2035-2046, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28371333

RESUMO

Prostate cancer (PCa) is the second leading cause of death among men in Europe and U.S. The metastatic dissemination pattern of PCa is unique, developing bone metastasis as the only site of progression, consequently with a prognosis very poor. The cancer cells interactions within the surrounding bone environment are critical for tumor growth and progression. Secreted protein, acidic and rich in cysteine (SPARC) is described to be involved in PCa cells migration and invasion into bone. Three-dimensional (3D) in vitro systems that are able to closely resemble the in vivo microenvironment are recently taking importance in cancer research. Original nanohydroxyapatite/collagen scaffolds were designed to resemble bone microenvironment in order to be applied as substitutes in bone defects and as potential biomaterials to mimic skeletal tumors. In fact, these 3D structures were cytocompatible and able to support osteoblast (MC3T3-E1) colonization and to promote bone ingrowth. Additionally, SPARC adsorption onto the scaffolds affected PC3 and LNCaP PCa cell lines behavior. PC3 cells were found to adapt and colonize the scaffolds, differing from LNCaP where cells underwent morphogenic changes and grew as clusters. Furthermore, for the tested SPARC concentration, SPARC plays a role in retaining LNCaP cells at the latter time points while with PC3 cells no significant differences were observed. This characterization study is required to establish a bone model to provide new insights into the poorly understood PCa mechanisms of metastasis to bone and the generation of improved therapies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2035-2046, 2017.


Assuntos
Osso e Ossos , Durapatita/química , Nanoestruturas/química , Neoplasias da Próstata/metabolismo , Alicerces Teciduais/química , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/metabolismo , Osteonectina/metabolismo , Neoplasias da Próstata/patologia
17.
J Hematol Oncol ; 10(1): 43, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166834

RESUMO

BACKGROUND: Numerous DNA-damaging cellular stresses, including oncogene activation and DNA-damage response (DDR), may lead to cellular senescence. Previous observations linked microRNA deregulation with altered senescent patterns, prompting us to investigate whether epigenetic repression of microRNAs expression might disrupt senescence in prostate cancer (PCa) cells. METHODS: Differential methylation mapping in prostate tissues was carried using Infinium HumanMethylation450 BeadChip. After validation of methylation and expression analyses in a larger series of prostate tissues, the functional role of the cluster miR-130b~301b was explored using in vitro studies testing cell viability, apoptosis, invasion and DNA damage in prostate cancer cell lines. Western blot and RT-qPCR were performed to support those observations. RESULTS: We found that the miR-130b~301b cluster directs epigenetic activation of cell cycle inhibitors required for DDR activation, thus stimulating the senescence-associated secretory phenotype (SASP). Furthermore, overexpression of miR-130b~301b cluster markedly reduced the malignant phenotype of PCa cells. CONCLUSIONS: Altogether, these data demonstrate that miR-130b~301b cluster overexpression might effectively induce PCa cell growth arrest through epigenetic regulation of proliferation-blocking genes and activation of cellular senescence.


Assuntos
Adenocarcinoma/genética , Senescência Celular/genética , Metilação de DNA , MicroRNAs/genética , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , RNA Neoplásico/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Regulação para Baixo , Humanos , Masculino , MicroRNAs/biossíntese , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Neoplásico/biossíntese
18.
Cancer Lett ; 385: 150-159, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-27984115

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs that mediate post-transcriptional gene silencing, fine tuning gene expression. In an initial screen, miRNAs were found to be globally down-regulated in prostate cancer (PCa) cell lines and primary tumours. Exposure of PCa cell lines to a demethylating agent, 5-Aza-CdR resulted in an increase in the expression levels of miRNAs in general. Using stringent filtering criteria miR-130a was identified as the most promising candidate and selected for validation analyses in our patient series. Down-regulation of miR-130a was associated with promoter hypermethylation. MiR-130a methylation levels discriminated PCa from non-malignant tissues (AUC = 0.956), and urine samples revealed high specificity for non-invasive detection of patients with PCa (AUC = 0.89). Additionally, repressive histone marks were also found in the promoter of miR-130a. Over-expression of miR-130a in PCa cells reduced cell viability and invasion capability, and increased apoptosis. Putative targets of miR-130a were assessed by microarray expression profiling and DEPD1C and SEC23B were selected for validation. Silencing of both genes resembled the effect of over-expressing miR-130a in PCa cells. Our data indicate that miR-130a is an epigenetically regulated miRNA involved in regulation of key molecular and phenotypic features of prostate carcinogenesis, acting as a tumour suppressor miRNA.


Assuntos
Biomarcadores Tumorais/genética , Epigênese Genética , Proteínas Ativadoras de GTPase/genética , Genes Supressores de Tumor , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Proteínas de Transporte Vesicular/genética , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Montagem e Desmontagem da Cromatina , Metilação de DNA , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Humanos , Masculino , MicroRNAs/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Transfecção , Proteínas de Transporte Vesicular/metabolismo
19.
Clin Epigenetics ; 8: 98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27651838

RESUMO

Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.


Assuntos
Antineoplásicos/uso terapêutico , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA , Histonas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/antagonistas & inibidores , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise de Sobrevida , Resultado do Tratamento
20.
Am J Cancer Res ; 6(8): 1799-811, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648366

RESUMO

Macrophage stimulating 1 receptor (MST1R) is a C-MET proto-oncogene family receptor tyrosine kinase. Promoter methylation patterns determine transcription of MST1R variants as hypermethylation of a region upstream of transcription start site (TSS) is associated with lack of MST1R long transcript (MST1R long) and expression of a short transcript with oncogenic potential. Thus, we aimed to investigate MST1R variant transcript regulation in renal cell tumors (RCT) and assess their prognostic potential. We found, in a series of 120 RCT comprising the four main subtypes (clear cell, papillary and chromophobe renal cell carcinoma, and oncocytoma), that higher methylation levels close to TSS were associated with total MST1R expression levels (MST1R total) in primary tumors (p=0.049) and renal cancer cell lines. After demethylating treatment, MST1R long/MST1R total ratio increased, as expected, in two renal cell carcinoma cell lines tested. However, in primary tumors with hypermethylation upstream of TSS, a decrease in MST1R long/MST1R total ratio was not detected, although higher expression ratio of nuclear factor-κB was apparent. Furthermore, survival analysis demonstrated that MST1R long/MST1R total ratio was independently associated with shorter disease-specific and disease-free survival, whereas MST1R total expression associated with shorter disease-specific survival. In conclusion, although promoter methylation patterns seem to determine MST1R global transcription regulation in renal cell carcinoma, other mechanisms might contribute to deregulate MST1R variant expression in RCT. Nevertheless, MST1R total expression and MST1R long/MST1R total ratio modulate the biological and clinical aggressiveness of renal cell carcinoma, as depicted by its prognostic significance, a finding that requires validation in a larger independent series.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...