Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(11): e0188915, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190734

RESUMO

Porphyromonas gingivalis, an asaccharolytic Gram-negative oral anaerobe, is a major pathogen associated with adult periodontitis, a chronic infective disease that a significant percentage of the human population suffers from. It preferentially utilizes dipeptides as its carbon source, suggesting the importance of dipeptidyl peptidase (DPP) types of enzyme for its growth. Until now DPP IV, DPP5, 7 and 11 have been extensively investigated. Here, we report the characterization of DPP III using molecular biology, biochemical, biophysical and computational chemistry methods. In addition to the expected evolutionarily conserved regions of all DPP III family members, PgDPP III possesses a C-terminal extension containing an Armadillo (ARM) type fold similar to the AlkD family of bacterial DNA glycosylases, implicating it in alkylation repair functions. However, complementation assays in a DNA repair-deficient Escherichia coli strain indicated the absence of alkylation repair function for PgDPP III. Biochemical analyses of recombinant PgDPP III revealed activity similar to that of DPP III from Bacteroides thetaiotaomicron, and in the range between activities of human and yeast counterparts. However, the catalytic efficiency of the separately expressed DPP III domain is ~1000-fold weaker. The structure and dynamics of the ligand-free enzyme and its complex with two different diarginyl arylamide substrates was investigated using small angle X-ray scattering, homology modeling, MD simulations and hydrogen/deuterium exchange (HDX). The correlation between the experimental HDX and MD data improved with simulation time, suggesting that the DPP III domain adopts a semi-closed or closed form in solution, similar to that reported for human DPP III. The obtained results reveal an atypical DPP III with increased structural complexity: its superhelical C-terminal domain contributes to peptidase activity and influences DPP III interdomain dynamics. Overall, this research reveals multifunctionality of PgDPP III and opens direction for future research of DPP III family proteins.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Porphyromonas gingivalis/enzimologia , Calorimetria , Dicroísmo Circular , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Eletroforese em Gel de Poliacrilamida , Cinética , Simulação de Dinâmica Molecular , Conformação Proteica , Proteólise
2.
Phys Chem Chem Phys ; 18(13): 8890-900, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26959939

RESUMO

Brassica rapa auxin amidohydrolase (BrILL2) participates in the homeostasis of the plant hormones auxins by hydrolyzing the amino acid conjugates of auxins, thereby releasing the free active form of hormones. Herein, the potential role of the two conserved Cys residues of BrILL2 (at sequence positions 139 and 320) has been investigated by using interdisciplinary approaches and methods of molecular biology, biochemistry, biophysics and molecular modelling. The obtained results show that both Cys residues participate in the regulation of enzyme activity. Cys320 located in the satellite domain of the enzyme is mainly responsible for protein stability and regulation of enzyme activity through polymer formation, as has been revealed by enzyme kinetics and differential scanning calorimetry analysis of the BrILL2 wild type and mutants C320S and C139S. Cys139 positioned in the active site of the catalytic domain is involved in the coordination of one Mn(2+) ion of the bimetal center and is crucial for the enzymatic activity. Although the point mutation Cys139 to Ser causes the loss of enzyme activity, it does not affect the metal binding to the BrILL2 enzyme, as has been shown by isothermal titration calorimetry, circular dichroism spectropolarimetry and differential scanning calorimetry data. MD simulations (200 ns) revealed a different active site architecture of the BrILL2C139S mutant in comparison to the wild type enzyme. Additional possible reasons for the inactivity of the BrILL2C139S mutant have been discussed based on MD simulations and MM-PBSA free energy calculations of BrILL2 enzyme complexes (wt and C139S mutant) with IPA-Ala as a substrate.


Assuntos
Amidoidrolases/metabolismo , Brassica rapa/enzimologia , Cisteína/química , Ácidos Indolacéticos/metabolismo , Calorimetria , Estabilidade Enzimática , Espectrometria de Massas , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
3.
Mol Biosyst ; 9(8): 2051-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23681361

RESUMO

A series of structurally similar bis-phenanthridinium derivatives, some with uracil at different positions, revealed different interactions with various polynucleotides. The uniform binding of mononucleotides to all studied compounds by "cyclobisintercaland" binding type indicated that compound-polynucleotide interaction selectivity was the consequence of polynucleotide secondary structure and not direct nucleobase recognition. Although affinity and fluorimetric response of all studied compounds toward ds-DNA/RNA was similar, the thermal denaturation and ICD signal-based sensing was highly sensitive to polynucleotide basepair composition and secondary structure. In particular, for the specific poly rAH(+)-poly rAH(+) double helix MD parameters are newly developed and used for analysis of its complexes. The highly sensitive orientation of phenanthridinium as well as the role of the uracil substituent, both binding interactions finely tuned by the steric and binding properties of the DNA/RNA-ligand interaction site, offer novel structural information about binding and steric properties of particular DNA-RNA systems.


Assuntos
DNA/química , Sondas Moleculares/química , Fenantridinas/química , Polinucleotídeos/química , RNA/química , Uracila/química , Dicroísmo Circular , Sondas Moleculares/síntese química , Conformação de Ácido Nucleico , Fenantridinas/síntese química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...