Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Macromol Biosci ; 24(2): e2300270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37700543

RESUMO

The skin, the human body's largest organ, possesses a protective barrier that renders it susceptible to various injuries, including burns. Following burn trauma, the inflammatory process triggers both innate and adaptive immune responses, leading to the polarization of macrophages into two distinct phenotypes: the pro-inflammatory M1 and the anti-inflammatory M2. This dual response sets the stage for wound healing and subsequent tissue regeneration. Contributing to this transition from M1 to M2 polarization are human adipose-derived stem cells (ASCs), which employ paracrine signaling and inflammation suppression to enhance the remodeling phase. ASCs, when combined with biocompatible polymers, can be integrated into functional scaffolds. This study introduces an 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-crosslinked (EDC-crosslinked) collagen-hyaluronic acid (Col-HA) scaffold assembled with ASCs, designed as a natural biomaterial device to modulate macrophage behavior in vitro under co-culture conditions. This innovation aims to improve wound healing processes. The EDC-crosslinked Col-HA scaffold favored the release of anti-inflammatory cytokines by ASCs, which indicated the M2 prevalence. In tissue engineering, a critical objective lies in the development of functional biomaterials capable of guiding specific tissue responses, notably the control of inflammatory processes. Thus, this research not only presents original findings but also points toward a promising avenue within regenerative medicine.


Assuntos
Ácido Hialurônico , Interleucina-10 , Humanos , Técnicas de Cocultura , Ácido Hialurônico/farmacologia , Macrófagos , Colágeno , Materiais Biocompatíveis/farmacologia , Anti-Inflamatórios , Células-Tronco
2.
Life (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063766

RESUMO

Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.

3.
Life, v. 11, n. 6, 460, maio. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3820

RESUMO

Biopharmaceutical production is currently a multibillion-dollar industry with high growth perspectives. The research and development of biologically sourced pharmaceuticals are extremely important and a reality in our current healthcare system. Interferon alpha consensus (cIFN) is a non-natural synthetic antiviral molecule that comprises all the most prevalent amino acids of IFN-α into one consensus protein sequence. For clinical use, cIFN is produced in E. coli in the form of inclusion bodies. Here, we describe the use of two solubility tags (Fh8 and DsbC) to improve soluble cIFN production. Furthermore, we analyzed cIFN production in different culture media and temperatures in order to improve biopharmaceutical production. Our results demonstrate that Fh8-cIFN yield was improved when bacteria were cultivated in autoinduction culture medium at 30 °C. After hydrolysis, the recovery of soluble untagged cIFN was 58% from purified Fh8-cIFN molecule, fourfold higher when compared to cIFN recovered from the DsbC-cIFN, which achieved 14% recovery. The biological activity of cIFN was tested on in vitro model of antiviral effect against Zika, Mayaro, Chikungunya and SARS-CoV-2 virus infection in susceptible VERO cells. We show, for the first time, that cIFN has a potent activity against these viruses, being very low amounts of the molecule sufficient to inhibit virus multiplication. Thus, this molecule could be used in a clinical approach to treat Arboviruses and SARS-CoV-2.

4.
Inflammopharmacology ; 26(2): 491-504, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28779430

RESUMO

Pulmonary fibrosis is a result of an abnormal wound healing in lung tissue triggered by an excessive accumulation of extracellular matrix proteins, loss of tissue elasticity, and debit of ventilatory function. NKT cells are a major source of Th1 and Th2 cytokines and may be crucial in the polarization of M1/M2 macrophages in pulmonary fibrogenesis. Although there appears to be constant scientific progress in that field, pulmonary fibrosis still exhibits no current cure. From these facts, we hypothesized that NKT cells could influence the development of pulmonary fibrosis via modulation of macrophage activation. Wild type (WT) and NKT type I cell-deficient mice (Jα18-/-) were subjected to the protocol of bleomycin-induced pulmonary fibrosis with or without treatment with NKT cell agonists α-galactosylceramide and sulfatide. The participation of different cell populations, collagen deposition, and protein levels of different cytokines involved in inflammation and fibrosis was evaluated. The results indicate a benign role of NKT cells in Jα18-/- mice and in wild-type α-galactosylceramide-sulfatide-treated groups. These animals presented lower levels of collagen deposition, fibrogenic molecules such as TGF-ß and vimentin and improved survival rates. In contrast, WT mice developed a Th2-driven response augmenting IL-4, 5, and 13 protein synthesis and increased collagen deposition. Furthermore, the arginase-1 metabolic pathway was downregulated in wild-type NKT-activated and knockout mice indicating lower activity of M2 macrophages in lung tissue. Hence, our data suggest that NKT cells play a protective role in this experimental model by down modulating the Th2 milieu, inhibiting M2 polarization and finally preventing fibrosis.


Assuntos
Bleomicina/farmacologia , Macrófagos/fisiologia , Células T Matadoras Naturais/fisiologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/fisiopatologia , Animais , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Galactosilceramidas/farmacologia , Inflamação/metabolismo , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Fenótipo , Fibrose Pulmonar/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...